Software token

Last updated

A software token (a.k.a. soft token) is a piece of a two-factor authentication security device that may be used to authorize the use of computer services. [1] Software tokens are stored on a general-purpose electronic device such as a desktop computer, laptop, PDA, or mobile phone and can be duplicated. (Contrast hardware tokens, where the credentials are stored on a dedicated hardware device and therefore cannot be duplicated — absent physical invasion of the device)

Contents

Because software tokens are something one does not physically possess, they are exposed to unique threats based on duplication of the underlying cryptographic material - for example, computer viruses and software attacks. Both hardware and software tokens are vulnerable to bot-based man-in-the-middle attacks, or to simple phishing attacks in which the one-time password provided by the token is solicited, and then supplied to the genuine website in a timely manner. Software tokens do have benefits: there is no physical token to carry, they do not contain batteries that will run out, and they are cheaper than hardware tokens. [2]

Security architecture

There are two primary architectures for software tokens: shared secret and public-key cryptography.

For a shared secret, an administrator will typically generate a configuration file for each end-user. The file will contain a username, a personal identification number, and the secret. This configuration file is given to the user.

The shared secret architecture is potentially vulnerable in a number of areas. The configuration file can be compromised if it is stolen and the token is copied. With time-based software tokens, it is possible to borrow an individual's PDA or laptop, set the clock forward, and generate codes that will be valid in the future. Any software token that uses shared secrets and stores the PIN alongside the shared secret in a software client can be stolen and subjected to offline attacks. Shared secret tokens can be difficult to distribute, since each token is essentially a different piece of software. Each user must receive a copy of the secret, which can create time constraints.

Some newer software tokens rely on public-key cryptography, or asymmetric cryptography. This architecture eliminates some of the traditional weaknesses of software tokens, but does not affect their primary weakness (ability to duplicate). A PIN can be stored on a remote authentication server instead of with the token client, making a stolen software token no good unless the PIN is known as well. However, in the case of a virus infection, the cryptographic material can be duplicated and then the PIN can be captured (via keylogging or similar) the next time the user authenticates. If there are attempts made to guess the PIN, it can be detected and logged on the authentication server, which can disable the token. Using asymmetric cryptography also simplifies implementation, since the token client can generate its own key pair and exchange public keys with the server.

See also

Related Research Articles

Kerberos is a computer-network authentication protocol that works on the basis of tickets to allow nodes communicating over a non-secure network to prove their identity to one another in a secure manner. Its designers aimed it primarily at a client–server model, and it provides mutual authentication—both the user and the server verify each other's identity. Kerberos protocol messages are protected against eavesdropping and replay attacks.

<span class="mw-page-title-main">Password</span> Used for user authentication to prove identity or access approval

A password, sometimes called a passcode, is secret data, typically a string of characters, usually used to confirm a user's identity. Traditionally, passwords were expected to be memorized, but the large number of password-protected services that a typical individual accesses can make memorization of unique passwords for each service impractical. Using the terminology of the NIST Digital Identity Guidelines, the secret is held by a party called the claimant while the party verifying the identity of the claimant is called the verifier. When the claimant successfully demonstrates knowledge of the password to the verifier through an established authentication protocol, the verifier is able to infer the claimant's identity.

An authenticator is a means used to confirm a user's identity, that is, to perform digital authentication. A person authenticates to a computer system or application by demonstrating that he or she has possession and control of an authenticator. In the simplest case, the authenticator is a common password.

RSA SecurID, formerly referred to as SecurID, is a mechanism developed by RSA for performing two-factor authentication for a user to a network resource.

Wi-Fi Protected Access (WPA), Wi-Fi Protected Access 2 (WPA2), and Wi-Fi Protected Access 3 (WPA3) are the three security certification programs developed after 2000 by the Wi-Fi Alliance to secure wireless computer networks. The Alliance defined these in response to serious weaknesses researchers had found in the previous system, Wired Equivalent Privacy (WEP).

The Encrypting File System (EFS) on Microsoft Windows is a feature introduced in version 3.0 of NTFS that provides filesystem-level encryption. The technology enables files to be transparently encrypted to protect confidential data from attackers with physical access to the computer.

S/KEY is a one-time password system developed for authentication to Unix-like operating systems, especially from dumb terminals or untrusted public computers on which one does not want to type a long-term password. A user's real password is combined in an offline device with a short set of characters and a decrementing counter to form a single-use password. Because each password is only used once, they are useless to password sniffers.

Internet security is a branch of computer security. It encompasses the Internet, browser security, web site security, and network security as it applies to other applications or operating systems as a whole. Its objective is to establish rules and measures to use against attacks over the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

<span class="mw-page-title-main">One-time password</span> Password that can only be used once

A one-time password (OTP), also known as a one-time PIN, one-time authorization code (OTAC) or dynamic password, is a password that is valid for only one login session or transaction, on a computer system or other digital device. OTPs avoid several shortcomings that are associated with traditional (static) password-based authentication; a number of implementations also incorporate two-factor authentication by ensuring that the one-time password requires access to something a person has as well as something a person knows.

<span class="mw-page-title-main">Security token</span> Device used to access electronically restricted resource

A security token is a peripheral device used to gain access to an electronically restricted resource. The token is used in addition to, or in place of, a password. It acts like an electronic key to access something. Examples of security tokens include wireless keycards used to open locked doors, or a banking token used as a digital authenticator for signing in to online banking, or signing a transaction such as a wire transfer.

Extensible Authentication Protocol (EAP) is an authentication framework frequently used in network and internet connections. It is defined in RFC 3748, which made RFC 2284 obsolete, and is updated by RFC 5247. EAP is an authentication framework for providing the transport and usage of material and parameters generated by EAP methods. There are many methods defined by RFCs, and a number of vendor-specific methods and new proposals exist. EAP is not a wire protocol; instead it only defines the information from the interface and the formats. Each protocol that uses EAP defines a way to encapsulate by the user EAP messages within that protocol's messages.

<span class="mw-page-title-main">Wireless security</span> Aspect of wireless networks

Wireless security is the prevention of unauthorized access or damage to computers or data using wireless networks, which include Wi-Fi networks. The term may also refer to the protection of the wireless network itself from adversaries seeking to damage the confidentiality, integrity, or availability of the network. The most common type is Wi-Fi security, which includes Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). WEP is an old IEEE 802.11 standard from 1997. It is a notoriously weak security standard: the password it uses can often be cracked in a few minutes with a basic laptop computer and widely available software tools. WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP. Enterprises often enforce security using a certificate-based system to authenticate the connecting device, following the standard 802.11X.

In cryptography, CRAM-MD5 is a challenge–response authentication mechanism (CRAM) based on the HMAC-MD5 algorithm. As one of the mechanisms supported by the Simple Authentication and Security Layer (SASL), it is often used in email software as part of SMTP Authentication and for the authentication of POP and IMAP users, as well as in applications implementing LDAP, XMPP, BEEP, and other protocols.

In a Windows network, NT LAN Manager (NTLM) is a suite of Microsoft security protocols intended to provide authentication, integrity, and confidentiality to users. NTLM is the successor to the authentication protocol in Microsoft LAN Manager (LANMAN), an older Microsoft product. The NTLM protocol suite is implemented in a Security Support Provider, which combines the LAN Manager authentication protocol, NTLMv1, NTLMv2 and NTLM2 Session protocols in a single package. Whether these protocols are used or can be used on a system which is governed by Group Policy settings, for which different versions of Windows have different default settings.

Data Protection Application Programming Interface (DPAPI) is a simple cryptographic application programming interface available as a built-in component in Windows 2000 and later versions of Microsoft Windows operating systems. In theory, the Data Protection API can enable symmetric encryption of any kind of data; in practice, its primary use in the Windows operating system is to perform symmetric encryption of asymmetric private keys, using a user or system secret as a significant contribution of entropy. A detailed analysis of DPAPI inner-workings was published in 2011 by Bursztein et al.

Disk encryption is a technology which protects information by converting it into code that cannot be deciphered easily by unauthorized people or processes. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage.

There are a number of security and safety features new to Windows Vista, most of which are not available in any prior Microsoft Windows operating system release.

Pre-boot authentication (PBA) or power-on authentication (POA) serves as an extension of the BIOS, UEFI or boot firmware and guarantees a secure, tamper-proof environment external to the operating system as a trusted authentication layer. The PBA prevents anything being read from the hard disk such as the operating system until the user has confirmed they have the correct password or other credentials including multi-factor authentication.

Multi-factor authentication is an electronic authentication method in which a user is granted access to a website or application only after successfully presenting two or more pieces of evidence to an authentication mechanism. MFA protects personal data—which may include personal identification or financial assets—from being accessed by an unauthorized third party that may have been able to discover, for example, a single password.

multiOTP Authentication system

multiOTP is an open source PHP class, a command line tool, and a web interface that can be used to provide an operating-system-independent, strong authentication system. multiOTP is OATH-certified since version 4.1.0 and is developed under the LGPL license. Starting with version 4.3.2.5, multiOTP open source is also available as a virtual appliance—as a standard OVA file, a customized OVA file with open-vm-tools, and also as a virtual machine downloadable file that can run on Microsoft's Hyper-V, a common native hypervisor in Windows computers.

References

  1. Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar; Rao, Nageswara S.V.; Foster, Ian T.; Clark, Russ; Owen, Henry (2018-02-01). "Advance reservation access control using software-defined networking and tokens". Future Generation Computer Systems. 79: 225–234. doi: 10.1016/j.future.2017.03.010 . OSTI   1394409.
  2. SecurityPro News Strong Authentication Retrieved on April 3, 2007.