The solar cycle is a 28-year cycle of the Julian calendar, and 400-year cycle of the Gregorian calendar with respect to the week. It occurs because leap years occur every 4 years, typically observed by adding a day to the month of February, making it February 29th. There are 7 possible days to start a leap year, making a 28-year sequence. [1]
This cycle also occurs in the Gregorian calendar, but it is interrupted by years such as 1700, 1800, 1900, 2100, 2200, 2300, 2500, 2600, 2700, 2900, and any year that is divisible by 100, but not by 400. These years are common years and are not leap years. This interruption has the effect of skipping 16 years of the solar cycle between February 28 and March 1. Because the Gregorian cycle of 400 years has exactly 146,097 days, i.e. exactly 20,871 weeks, one can say that the Gregorian so-called solar cycle lasts 400 years. [2]
Calendar years are usually marked by Dominical letters indicating the first Sunday in a new year, thus the term solar cycle can also refer to a repeating sequence of Dominical letters. Unless a year is not a leap year due to Gregorian exceptions, a sequence of calendars is reused every 28 years. [3]
Sun-based calendars are first thought to be used by the Egyptians, who based it around the annual sunrise of the Dog Star and flooding of the Nile River. [4]
A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of a single and specific day within such a system. A calendar is also a physical record of such a system. A calendar can also mean a list of planned events, such as a court calendar, or a partly or fully chronological list of documents, such as a calendar of wills.
Intercalation or embolism in timekeeping is the insertion of a leap day, week, or month into some calendar years to make the calendar follow the seasons or moon phases. Lunisolar calendars may require intercalations of both days and months.
A leap year is a calendar year that contains an additional day compared to a common year. The 366th day is added to keep the calendar year synchronized with the astronomical year or seasonal year. Because astronomical events and seasons do not repeat in a whole number of days, calendars that have a constant number of days in each year will unavoidably drift over time with respect to the event that the year is supposed to track, such as seasons. By inserting ("intercalating") an additional day, a leap day, or month, a leap month, into some years, the drift between a civilization's dating system and the physical properties of the Solar System can be corrected.
A common year starting on Sunday is any non-leap year that begins on Sunday, 1 January, and ends on Sunday, 31 December. Its dominical letter hence is A. The most recent year of such kind was 2023 and the next one will be 2034 in the Gregorian calendar, or, likewise, 2018 and 2029 in the obsolete Julian calendar, see below for more.
A common year starting on Friday is any non-leap year that begins on Friday, 1 January, and ends on Friday, 31 December. Its dominical letter hence is C. The most recent year of such kind was 2021 and the next one will be 2027 in the Gregorian calendar, or, likewise, 2022 and 2033 in the obsolete Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can begin on, and occurs in century years that yield a remainder of 100 when divided by 400. The most recent such year was 1700 and the next one will be 2100.
A common year starting on Monday is any non-leap year that begins on Monday, 1 January, and ends on Monday, 31 December. Its dominical letter hence is G. The most recent year of such kind was 2018 and the next one will be 2029 in the Gregorian calendar, or likewise, 2019 and 2030 in the Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can begin on and occurs in century years that yield a remainder of 300 when divided by 400. The most recent such year was 1900 and the next one will be 2300.
As a moveable feast, the date of Easter is determined in each year through a calculation known as computus. Easter is celebrated on the first Sunday after the Paschal full moon, which is the first full moon on or after 21 March. Determining this date in advance requires a correlation between the lunar months and the solar year, while also accounting for the month, date, and weekday of the Julian or Gregorian calendar. The complexity of the algorithm arises because of the desire to associate the date of Easter with the date of the Jewish feast of Passover which, Christians believe, is when Jesus was crucified.
The epact used to be described by medieval computists as the age of a phase of the Moon in days on 22 March; in the newer Gregorian calendar, however, the epact is reckoned as the age of the ecclesiastical moon on 1 January. Its principal use is in determining the date of Easter by computistical methods. It varies from year to year, because of the difference between the solar year of 365–366 days and the lunar year of 354–355 days.
Dominical letters or Sunday letters are a method used to determine the day of the week for particular dates. When using this method, each year is assigned a letter depending on which day of the week the year starts. The Dominical letter for the current year 2024 is GF.
A common year starting on Tuesday is any non-leap year that begins on Tuesday, 1 January, and ends on Tuesday, 31 December. Its dominical letter hence is F. The most recent year of such kind was 2019 and the next one will be 2030, or, likewise, 2014 and 2025 in the obsolete Julian calendar, see below for more.
A common year starting on Wednesday is any non-leap year that begins on Wednesday, 1 January, and ends on Wednesday, 31 December. Its dominical letter hence is E. The most recent year of such kind was 2014, and the next one will be 2025 in the Gregorian calendar or, likewise, 2015 and 2026 in the obsolete Julian calendar, see below for more. This common year is one of the three possible common years in which a century year can begin on, and occurs in century years that yield a remainder of 200 when divided by 400. The most recent such year was 1800 and the next one will be 2200.
A common year starting on Saturday is any non-leap year that begins on Saturday, 1 January, and ends on Saturday, 31 December. Its dominical letter hence is B. The most recent year of such kind was 2022 and the next one will be 2033 in the Gregorian calendar or, likewise, 2023 and 2034 in the obsolete Julian calendar. See below for more.
A common year starting on Thursday is any non-leap year that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar or, likewise, 2021 and 2027 in the obsolete Julian calendar, see below for more.
28 (twenty-eight) is the natural number following 27 and preceding 29.
A leap week calendar is a calendar system with a whole number of weeks in a year, and with every year starting on the same weekday. Most leap week calendars are proposed reforms to the civil calendar, in order to achieve a perennial calendar. Some, however, such as the ISO week date calendar, are simply conveniences for specific purposes.
The Doomsday rule, Doomsday algorithm or Doomsday method is an algorithm of determination of the day of the week for a given date. It provides a perpetual calendar because the Gregorian calendar moves in cycles of 400 years. The algorithm for mental calculation was devised by John Conway in 1973, drawing inspiration from Lewis Carroll's perpetual calendar algorithm. It takes advantage of each year having a certain day of the week upon which certain easy-to-remember dates, called the doomsdays, fall; for example, the last day of February, 4/4, 6/6, 8/8, 10/10, and 12/12 all occur on the same day of the week in any year.
The Ethiopian calendar, or Ge'ez calendar is the official calendar of Ethiopia. It is used as both the civil calendar and an ecclesiastical calendar. It is the liturgical year for Ethiopian and Eritrean Christians belonging to the Orthodox Tewahedo Churches, Eastern Catholic Churches, and Eastern Protestant Christian P'ent'ay Churches. The Ethiopian calendar is a solar calendar that has much in common with the Coptic calendar of the Coptic Orthodox Church of Alexandria and Coptic Catholic Church, but like the Julian calendar, it adds a leap day every four years without exception, and begins the year on 11 or 12th of September in the Julian calendar. A gap of seven to eight years between the Ethiopian and Gregorian calendars results from an alternative calculation in determining the date of the Annunciation.
The ISO week date system is effectively a leap week calendar system that is part of the ISO 8601 date and time standard issued by the International Organization for Standardization (ISO) since 1988 and, before that, it was defined in ISO (R) 2015 since 1971. It is used (mainly) in government and business for fiscal years, as well as in timekeeping. This was previously known as "Industrial date coding". The system specifies a week year atop the Gregorian calendar by defining a notation for ordinal weeks of the year.
The Gregorian calendar is the calendar used in most parts of the world. It went into effect in October 1582 following the papal bull Inter gravissimas issued by Pope Gregory XIII, which introduced it as a modification of, and replacement for, the Julian calendar. The principal change was to space leap years differently so as to make the average calendar year 365.2425 days long, more closely approximating the 365.2422-day 'tropical' or 'solar' year that is determined by the Earth's revolution around the Sun.
The Hanke–Henry Permanent Calendar (HHPC) is a proposal for calendar reform. It is one of many examples of leap week calendars, calendars that maintain synchronization with the solar year by intercalating entire weeks rather than single days. It is a modification of a previous proposal, Common-Civil-Calendar-and-Time (CCC&T). With the Hanke–Henry Permanent Calendar, every calendar date always falls on the same day of the week. A major feature of the calendar system is the abolition of time zones.