Space-filling tree

Last updated

Space-filling trees are geometric constructions that are analogous to space-filling curves, [1] but have a branching, tree-like structure and are rooted. A space-filling tree is defined by an incremental process that results in a tree for which every point in the space has a finite-length path that converges to it. In contrast to space-filling curves, individual paths in the tree are short, allowing any part of the space to be quickly reached from the root. [2] [3] The simplest examples of space-filling trees have a regular, self-similar, fractal structure, but can be generalized to non-regular and even randomized/Monte-Carlo variants (see Rapidly exploring random tree). Space-filling trees have interesting parallels in nature, including fluid distribution systems, vascular networks, and fractal plant growth, and many interesting connections to L-systems in computer science.

Contents

Definition

A space-filling tree is defined by an iterative process whereby a single point in a continuous space is connected via a continuous path to every other point in the space by a path of finite length, and for every point in the space, there is at least one path that converges to it.

The concept of a "space-filling tree" in this sense was described in Chapter 15 of Mandelbrot's influential book The Fractal Geometry of Nature (1982). [4] The concept was made more rigorous and given the name "space-filling tree" in a 2009 tech report [5] that defines "space-filling" and "tree" differently than their traditional definitions in mathematics. As explained in the space-filling curve article, in 1890, Peano found the first space-filling curve, and by Jordan's 1887 definition, which is now standard, a curve is a single function, not a sequence of functions. The curve is "space filling" because it is "a curve whose range contains the entire 2-dimensional unit square" (as explained in the first sentence of space-filling curve).

In contrast, a space-filling tree, as defined in the tech report, is not a single tree. It is only a sequence of trees. The paper says "A space-filling tree is actually defined as an infinite sequence of trees". It defines as a "sequence of trees", then states " is a space-filling tree". It is not space-filling in the standard sense of including the entire 2-dimensional unit square. Instead, the paper defines it as having trees in the sequence coming arbitrarily close to every point. It states "A tree sequence T is called 'space filling' in a space X if for every x  X, there exists a path in the tree that starts at the root and converges to x.". The standard term for this concept is that it includes a set of points that is dense everywhere in the unit square.

Examples

The simplest example of a space-filling tree is one that fills a square planar region. The images illustrate the construction for the planar region . At each iteration, additional branches are added to the existing trees.

Space-filling trees can also be defined for a variety of other shapes and volumes. Below is the subdivision scheme used to define a space-filling for a triangular region. At each iteration, additional branches are added to the existing trees connecting the center of each triangle to the centers of the four subtriangles.

The first six iterations of the triangle space-filling tree are illustrated below:

Space-filling trees can also be constructed in higher dimensions. The simplest examples are cubes in and hypercubes in . A similar sequence of iterations used for the square space-filling tree can be used for hypercubes. The third iteration of such a space-filling tree in is illustrated below:

See also

Related Research Articles

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and mentioned by German mathematician Georg Cantor in 1883.

<span class="mw-page-title-main">Hausdorff dimension</span> Invariant measure of fractal dimension

In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the Hausdorff–Besicovitch dimension.

<span class="mw-page-title-main">Mandelbrot set</span> Fractal named after mathematician Benoit Mandelbrot

The Mandelbrot set is a two-dimensional set with a relatively simple definition that exhibits great complexity, especially as it is magnified. It is popular for its aesthetic appeal and fractal structures. The set is defined in the complex plane as the complex numbers for which the function does not diverge to infinity when iterated starting at , i.e., for which the sequence , , etc., remains bounded in absolute value.

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

<span class="mw-page-title-main">Sierpiński triangle</span> Fractal composed of triangles

The Sierpiński triangle, also called the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with the overall shape of an equilateral triangle, subdivided recursively into smaller equilateral triangles. Originally constructed as a curve, this is one of the basic examples of self-similar sets—that is, it is a mathematically generated pattern that is reproducible at any magnification or reduction. It is named after the Polish mathematician Wacław Sierpiński, but appeared as a decorative pattern many centuries before the work of Sierpiński.

<span class="mw-page-title-main">Koch snowflake</span> Fractal curve

The Koch snowflake is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" by the Swedish mathematician Helge von Koch.

<span class="mw-page-title-main">Julia set</span> Fractal sets in complex dynamics of mathematics

In the context of complex dynamics, a branch of mathematics, the Julia set and the Fatou set are two complementary sets defined from a function. Informally, the Fatou set of the function consists of values with the property that all nearby values behave similarly under repeated iteration of the function, and the Julia set consists of values such that an arbitrarily small perturbation can cause drastic changes in the sequence of iterated function values. Thus the behavior of the function on the Fatou set is "regular", while on the Julia set its behavior is "chaotic".

<span class="mw-page-title-main">Menger sponge</span> Three-dimensional fractal

In mathematics, the Menger sponge is a fractal curve. It is a three-dimensional generalization of the one-dimensional Cantor set and two-dimensional Sierpinski carpet. It was first described by Karl Menger in 1926, in his studies of the concept of topological dimension.

In mathematics, a fractal dimension is a term invoked in the science of geometry to provide a rational statistical index of complexity detail in a pattern. A fractal pattern changes with the scale at which it is measured. It is also a measure of the space-filling capacity of a pattern, and it tells how a fractal scales differently, in a fractal (non-integer) dimension.

In mathematical analysis, a space-filling curve is a curve whose range reaches every point in a higher dimensional region, typically the unit square. Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called Peano curves, but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano.

<span class="mw-page-title-main">Iterated function system</span>

In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981.

<span class="mw-page-title-main">Sierpiński curve</span>

Sierpiński curves are a recursively defined sequence of continuous closed plane fractal curves discovered by Wacław Sierpiński, which in the limit completely fill the unit square: thus their limit curve, also called the Sierpiński curve, is an example of a space-filling curve.

In mathematics, specifically in symplectic topology and algebraic geometry, one can construct the moduli space of stable maps, satisfying specified conditions, from Riemann surfaces into a given symplectic manifold. This moduli space is the essence of the Gromov–Witten invariants, which find application in enumerative geometry and type IIA string theory. The idea of stable map was proposed by Maxim Kontsevich around 1992 and published in Kontsevich (1995).

<span class="mw-page-title-main">Hilbert curve</span> Space-filling curve

The Hilbert curve is a continuous fractal space-filling curve first described by the German mathematician David Hilbert in 1891, as a variant of the space-filling Peano curves discovered by Giuseppe Peano in 1890.

<span class="mw-page-title-main">Newton fractal</span> Boundary set in the complex plane

The Newton fractal is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial p(z) ∈ [z] or transcendental function. It is the Julia set of the meromorphic function zzp(z)/p′(z) which is given by Newton's method. When there are no attractive cycles (of order greater than 1), it divides the complex plane into regions Gk, each of which is associated with a root ζk of the polynomial, k = 1, …, deg(p). In this way the Newton fractal is similar to the Mandelbrot set, and like other fractals it exhibits an intricate appearance arising from a simple description. It is relevant to numerical analysis because it shows that (outside the region of quadratic convergence) the Newton method can be very sensitive to its choice of start point.

In mathematics, a de Rham curve is a continuous fractal curve obtained as the image of the Cantor space, or, equivalently, from the base-two expansion of the real numbers in the unit interval. Many well-known fractal curves, including the Cantor function, Cesàro–Faber curve, Minkowski's question mark function, blancmange curve, and the Koch curve are all examples of de Rham curves. The general form of the curve was first described by Georges de Rham in 1957.

<span class="mw-page-title-main">Schramm–Loewner evolution</span>

In probability theory, the Schramm–Loewner evolution with parameter κ, also known as stochastic Loewner evolution (SLEκ), is a family of random planar curves that have been proven to be the scaling limit of a variety of two-dimensional lattice models in statistical mechanics. Given a parameter κ and a domain in the complex plane U, it gives a family of random curves in U, with κ controlling how much the curve turns. There are two main variants of SLE, chordal SLE which gives a family of random curves from two fixed boundary points, and radial SLE, which gives a family of random curves from a fixed boundary point to a fixed interior point. These curves are defined to satisfy conformal invariance and a domain Markov property.

<span class="mw-page-title-main">Tricorn (mathematics)</span>

In mathematics, the tricorn, sometimes called the Mandelbar set, is a fractal defined in a similar way to the Mandelbrot set, but using the mapping instead of used for the Mandelbrot set. It was introduced by W. D. Crowe, R. Hasson, P. J. Rippon, and P. E. D. Strain-Clark. John Milnor found tricorn-like sets as a prototypical configuration in the parameter space of real cubic polynomials, and in various other families of rational maps.

<span class="mw-page-title-main">H tree</span> Right-angled fractal canopy

In fractal geometry, the H tree is a fractal tree structure constructed from perpendicular line segments, each smaller by a factor of the square root of 2 from the next larger adjacent segment. It is so called because its repeating pattern resembles the letter "H". It has Hausdorff dimension 2, and comes arbitrarily close to every point in a rectangle. Its applications include VLSI design and microwave engineering.

<span class="mw-page-title-main">Finite subdivision rule</span> Way to divide polygon into smaller parts

In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds. Substitution tilings are a well-studied type of subdivision rule.

References

  1. Sagan, H. and J. Holbrook: "Space-filling curves", Springer-Verlag, New York, 1994
  2. Kuffner, J. J. and S. M. LaValle: Space-filling Trees, The Robotics Institute, Carnegie Mellon University, CMU-RI-TR-09-47, 2009.
  3. Kuffner, J. J.; LaValle, S.M.; "Space-filling trees: A new perspective on incremental search for motion planning", 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol., no., pp.2199-2206, 25-30 Sept. 2011
  4. Mandelbrot, Benoît (1982). The Fractal Geometry of Nature. W H Freeman & Co. ISBN   0-7167-1186-9. Archived from the original on 30 November 2015.
  5. Kuffner, J. J. and S. M. LaValle: Space-filling Trees, The Robotics Institute, Carnegie Mellon University, CMU-RI-TR-09-47, 2009.