Spatial twist continuum

Last updated

In finite element analysis, the spatial twist continuum (STC) is a dual representation of a hexahedral mesh that defines the global connectivity constraint. Generation of an STC can simplify the automated generation of a mesh. The method was published in 1993 by a group led by Peter Murdoch.

Contents

The name is derived from the description of the surfaces that define the connectivity of the hexahedral elements. The surfaces are arranged in the three principal dimensions such that they form orthogonal intersections that coincide with the centroid of the hexahedral element. They are arranged predominately coplanar to each other in their respective dimensions yet they can twist into the other dimensional planes through transitions. The surfaces are unbroken throughout the entire volume of the mesh hence they are continuums.

Explanation

One of the areas where the STC finds application is computational fluid dynamics, a field of analysis that involves simulating the flow of fluids over and through bodies defined by boundary surfaces. The procedure involves building a mesh using it to analyze the system using a finite volume approach.

An analyst has many choices available for creating a mesh that can be used in a CFD or CAE simulation, one is to use a Tetrahedral, Polyhedral, Trimmed Cartesian or Mixed of Hybrid of Hexahedra called hex dominate, these are classified as non-structured meshes, which can all be created automatically, however the CFD and FEA results are both inaccurate and prone to solution divergence, (the simulation fails to solve). The other option for the analyst is to use an all-hexahedral mesh that offers far greater solver stability and speed as well as accuracy and the ability to run much more powerful turbulence solvers like Large eddy simulation LES in transient mode as opposed to the non-structured meshes that can only run a steady state RANS model.

The difficulty with generating an all-hexahedral mesh on a complex geometry is that mesh needs to take into consideration the local geometric detail as well as the global connectivity constraint. This is the STC, and it is only present in an all-hexahedral mesh. This is the reason why it is relatively easy to automate a non-structured mesh, the automatic generator only needs to be concerned with the local cell size geometry.

Advantages

The tradeoffs and relative benefits of using either mesh method to build and solve a CFD or CAE model are best explained by looking at the total work flow.

1) CAD cleanup. This involves fixing the gaps and holes in the CAD data. Usually the forgotten task that can consume a lot of time and energy and not something any experienced analyst looks forward too.

2) Mesh generation: The two main choices are to use an automated non-structured mesh or build a full hexahedral mesh.

a) Non-Structured: If one chooses to build a non-structured mesh then it is not as easy as first perceived. The process involves automatically building the mesh then manually fixing the regions of very poor cell quality. This process can take a considerable amount of time, another hidden time cost.

b) All-Hexahedral: As of mid-2009 there are a few all-hexahedral mesh generating tools. Some of them are (in alphabetical order)

However, there are ways of quickly building a hexahedral mesh such as using a 2D quad mesh and projecting into the z-direction. Another method is building a block structured mesh by using a CAD based program to create logically connected splines. After the blocks are built the cell factors are added to the blocks and the mesh created. One significant advantage of using a block based hexahedral mesh is the mesh can be smoothed very quickly. For large complex geometric models the process of building a hexahedral mesh can take days, weeks and even months depending on the skill level and tool sets available to the analyst.

3) Set up the model and assign the boundary conditions: This is a rather trivial step and it is usually taken care of by GUI assisted menus.

4) Running the Simulation: This is where the nightmares for the non-structured mesh begin. Since it takes six tetrahedrals to represent one hexahedral the tet mesh size will be considerably larger and will require a lot more computing power and RAM to solve an equivalent hexahedral mesh. The tetrahedral mesh will also require more relaxation factors to solve the simulation by effectively dampening the amplitude of the gradients. This increases the number of sub-cycle steps and drives the courant number up. If you built a hexahedral mesh this is where the tortoise passes the hare.

5) Post processing the results: The time required in this step is highly dependent on the size of the mesh (number of cells).

6) Making design changes: If you build a non-structured mesh this is where you go back to the beginning and start all over again. If you build a hexahedral mesh then you make the geometric change, re-smooth the mesh and restart the simulation.

7) Accuracy: This is the major difference between a non-structured mesh and a hexahedral mesh, and the main reason why it is preferred.

The "spatial twist continuum" addresses the issue of complex mesh model creation by elevating the structure of the mesh to a higher level of abstraction that assists in the creation of the all-hexahedral mesh.

Related Research Articles

<span class="mw-page-title-main">Computational fluid dynamics</span> Analysis and solving of problems that involve fluid flows

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

<span class="mw-page-title-main">Mesh generation</span> Subdivision of space into cells

Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI, depending on the complexity of the domain and the type of mesh desired. A typical goal is to create a mesh that accurately captures the input domain geometry, with high-quality (well-shaped) cells, and without so many cells as to make subsequent calculations intractable. The mesh should also be fine in areas that are important for the subsequent calculations.

<span class="mw-page-title-main">Unstructured grid</span> Unstructured (or irregular) grid is a tessellation of a part of the Euclidean plane

An unstructured grid or irregular grid is a tessellation of a part of the Euclidean plane or Euclidean space by simple shapes, such as triangles or tetrahedra, in an irregular pattern. Grids of this type may be used in finite element analysis when the input to be analyzed has an irregular shape.

Dassault Systèmes Simulia Corp. is a computer-aided engineering (CAE) vendor. Formerly known as Abaqus Inc. and previously Hibbitt, Karlsson & Sorensen, Inc., (HKS), the company was founded in 1978 by David Hibbitt, Bengt Karlsson and Paul Sorensen, and has its headquarters in Providence, Rhode Island.

<span class="mw-page-title-main">Soft-body dynamics</span> Computer graphics simulation of deformable objects

Soft-body dynamics is a field of computer graphics that focuses on visually realistic physical simulations of the motion and properties of deformable objects. The applications are mostly in video games and films. Unlike in simulation of rigid bodies, the shape of soft bodies can change, meaning that the relative distance of two points on the object is not fixed. While the relative distances of points are not fixed, the body is expected to retain its shape to some degree. The scope of soft body dynamics is quite broad, including simulation of soft organic materials such as muscle, fat, hair and vegetation, as well as other deformable materials such as clothing and fabric. Generally, these methods only provide visually plausible emulations rather than accurate scientific/engineering simulations, though there is some crossover with scientific methods, particularly in the case of finite element simulations. Several physics engines currently provide software for soft-body simulation.

Femap is an engineering analysis program sold by Siemens Digital Industries Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

code_saturne is a general-purpose computational fluid dynamics free computer software package. Developed since 1997 at Électricité de France R&D, code_saturne is distributed under the GNU GPL licence. It is based on a co-located finite-volume approach that accepts meshes with any type of cell and any type of grid structure.

Image-based meshing is the automated process of creating computer models for computational fluid dynamics (CFD) and finite element analysis (FEA) from 3D image data. Although a wide range of mesh generation techniques are currently available, these were usually developed to generate models from computer-aided design (CAD), and therefore have difficulties meshing from 3D imaging data.

<span class="mw-page-title-main">ScanIP</span>

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

<span class="mw-page-title-main">CD-adapco</span>

CD-adapco was a multinational computer software company that authored and distributed applications used for computer-aided engineering, best known for its computational fluid dynamics (CFD) products. In 2016 the company was acquired by Siemens Digital Industries Software.

MEDINA is a universal pre-/postprocessor for finite element analysis. The development of MEDINA started in the early 1990s at Daimler-Benz AG and was proceeded at debis Systemhaus. Since 2001 the support and the development of MEDINA takes place by T-Systems International GmbH. The current release is MEDINA Rel. 9.0.1.2

<span class="mw-page-title-main">VisualFEA</span>

VisualFEA is a finite element analysis software program for Microsoft Windows and Mac OS X. It is developed and distributed by Intuition Software, Inc. of South Korea, and used chiefly for structural and geotechnical analysis. Its strongest point is its intuitive, user-friendly design based on graphical pre- and postprocessing capabilities. It has educational features for teaching and learning structural mechanics, and finite element analysis through graphical simulation. It is widely used in college-level courses related to structural mechanics and finite element methods.

A mesh is a representation of a larger geometric domain by smaller discrete cells. Meshes are commonly used to compute solutions of partial differential equations and render computer graphics, and to analyze geographical and cartographic data. A mesh partitions space into elements over which the equations can be solved, which then approximates the solution over the larger domain. Element boundaries may be constrained to lie on internal or external boundaries within a model. Higher-quality (better-shaped) elements have better numerical properties, where what constitutes a "better" element depends on the general governing equations and the particular solution to the model instance.

Grid or mesh is defined as smaller shapes formed after discretisation of geometric domain. Mesh or grid can be in 3- dimension and 2-dimension. Meshing has applications in the fields of geography, designing, computational fluid dynamics. and many more places. The two-dimensional meshing includes simple polygon, polygon with holes, multiple domain and curved domain. In three dimensions there are three types of inputs. They are simple polyhedron, geometrical polyhedron and multiple polyhedrons. Before defining the mesh type it is necessary to understand elements.

<span class="mw-page-title-main">Gerris (software)</span> Computer Software

Gerris is computer software in the field of computational fluid dynamics (CFD). Gerris was released as free and open-source software, subject to the requirements of the GNU General Public License (GPL), version 2 or any later.

<span class="mw-page-title-main">GetFEM++</span>

GetFEM++ is a generic finite element C++ library with interfaces for Python, Matlab and Scilab. It aims at providing finite element methods and elementary matrix computations for solving linear and non-linear problems numerically. Its flexibility in choosing among different finite element approximations and numerical integration methods is one of its distinguishing characteristics.

<span class="mw-page-title-main">FEATool Multiphysics</span>

FEATool Multiphysics is a physics, finite element analysis (FEA), and partial differential equation (PDE) simulation toolbox. FEATool Multiphysics features the ability to model fully coupled heat transfer, fluid dynamics, chemical engineering, structural mechanics, fluid-structure interaction (FSI), electromagnetics, as well as user-defined and custom PDE problems in 1D, 2D (axisymmetry), or 3D, all within a graphical user interface (GUI) or optionally as script files. FEATool has been employed and used in academic research, teaching, and industrial engineering simulation contexts.

<span class="mw-page-title-main">CONSELF</span> Computer-aided engineering platform

CONSELF is a computer-aided engineering (CAE) platform used by engineers for design purposes. The platform, which highly relies on cloud computing, is developed by CONSELF SRL since its first release in October 2015. In March 2016 a new release of the platform defined guided workflows for the users with focus on turbomachinery, fire scenarios and flows with dispersed solid particles. Through the platform it is possible to run both Computational Fluid Dynamics and Finite Element Analysis. Among the solvers and libraries used by CONSELF platform, a number of open-source technologies are included, such as:

<span class="mw-page-title-main">Scott A. Mitchell</span> Applied mathematics researcher

Scott Alan Mitchell is a researcher of applied mathematics in the Center for Computing Research at Sandia National Laboratories.

<span class="mw-page-title-main">Simcenter STAR-CCM+</span>

Simcenter STAR-CCM+ is a commercial Computational Fluid Dynamics (CFD) based simulation software developed by Siemens Digital Industries Software. Simcenter STAR-CCM+ allows the modeling and analysis of a range of engineering problems involving fluid flow, heat transfer, stress, particulate flow, electromagnetics and related phenomena.

References