This article needs additional citations for verification .(May 2014) |
In the theory of algebraic groups, a special group is a linear algebraic group G with the property that every principal G-bundle is locally trivial in the Zariski topology. Special groups include the general linear group, the special linear group, and the symplectic group. Special groups are necessarily connected. Products of special groups are special. The projective linear group is not special because there exist Azumaya algebras, which are trivial over a finite separable extension, but not over the base field.
Special groups were defined in 1958 by Jean-Pierre Serre [1] and classified soon thereafter by Alexander Grothendieck. [2]
Alexander Grothendieck was a French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.
Jean-Pierre Serre is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003.
Henri Paul Cartan was a French mathematician who made substantial contributions to algebraic topology.
Claude Chevalley was a French mathematician who made important contributions to number theory, algebraic geometry, class field theory, finite group theory and the theory of algebraic groups. He was a founding member of the Bourbaki group.
The Éléments de géométrie algébrique by Alexander Grothendieck, or EGA for short, is a rigorous treatise, in French, on algebraic geometry that was published from 1960 through 1967 by the Institut des Hautes Études Scientifiques. In it, Grothendieck established systematic foundations of algebraic geometry, building upon the concept of schemes, which he defined. The work is now considered the foundation stone and basic reference of modern algebraic geometry.
In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
The Quillen–Suslin theorem, also known as Serre's problem or Serre's conjecture, is a theorem in commutative algebra concerning the relationship between free modules and projective modules over polynomial rings. In the geometric setting it is a statement about the triviality of vector bundles on affine space.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
In mathematics, specifically in algebraic geometry, the Grothendieck–Riemann–Roch theorem is a far-reaching result on coherent cohomology. It is a generalisation of the Hirzebruch–Riemann–Roch theorem, about complex manifolds, which is itself a generalisation of the classical Riemann–Roch theorem for line bundles on compact Riemann surfaces.
In mathematics, specifically in group theory, the phrase group of Lie type usually refers to finite groups that are closely related to the group of rational points of a reductive linear algebraic group with values in a finite field. The phrase group of Lie type does not have a widely accepted precise definition, but the important collection of finite simple groups of Lie type does have a precise definition, and they make up most of the groups in the classification of finite simple groups.
The Séminaire Nicolas Bourbaki is a series of seminars that has been held in Paris since 1948. It is one of the major institutions of contemporary mathematics, and a barometer of mathematical achievement, fashion, and reputation. It is named after Nicolas Bourbaki, a group of French and other mathematicians of variable membership.
Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s.
Continuation of the Séminaire Nicolas Bourbaki programme, for the 1960s.
French mathematical seminars have been an important type of institution combining research and exposition, active since the beginning of the twentieth century.
"Esquisse d'un Programme" is a famous proposal for long-term mathematical research made by the German-born, French mathematician Alexander Grothendieck in 1984. He pursued the sequence of logically linked ideas in his important project proposal from 1984 until 1988, but his proposed research continues to date to be of major interest in several branches of advanced mathematics. Grothendieck's vision provides inspiration today for several developments in mathematics such as the extension and generalization of Galois theory, which is currently being extended based on his original proposal.
In mathematics, Jean-Pierre Serre conjectured the following statement regarding the Galois cohomology of a simply connected semisimple algebraic group. Namely, he conjectured that if G is such a group over a perfect field F of cohomological dimension at most 2, then the Galois cohomology set H1(F, G) is zero.
Luc Illusie is a French mathematician, specializing in algebraic geometry. His most important work concerns the theory of the cotangent complex and deformations, crystalline cohomology and the De Rham–Witt complex, and logarithmic geometry. In 2012, he was awarded the Émile Picard Medal of the French Academy of Sciences.
In mathematics, a cohomological invariant of an algebraic group G over a field is an invariant of forms of G taking values in a Galois cohomology group.
Michel Paul Lazard was a French mathematician who worked on the theory of Lie groups in the context of p-adic analysis.