Spectral phase interferometry for direct electric-field reconstruction

Last updated
Concept of experimental implementation of conventional SPIDER. Conventional SPIDER concept.png
Concept of experimental implementation of conventional SPIDER.

In ultrafast optics, spectral phase interferometry for direct electric-field reconstruction (SPIDER) is an ultrashort pulse measurement technique originally developed by Chris Iaconis and Ian Walmsley.

Contents

The basics

SPIDER is an interferometric ultrashort pulse measurement technique in the frequency domain based on spectral shearing interferometry. Spectral shearing interferometry is similar in concept to lateral shearing interferometry, except the shearing is performed in the frequency domain. The spectral shear is typically generated by sum-frequency mixing the test pulse with two different quasi-monochromatic frequencies (usually derived by chirping a copy of the pulse itself), although it can also be achieved by spectral filtering or even with linear electro-optic modulators for picosecond pulses. The interference between the two upconverted pulses allows the spectral phase at one frequency to be referenced to the spectral phase at a different frequency, separated by the spectral shear - the difference in frequency of the two monochromatic beams. In order to extract the phase information, a carrier fringe pattern is introduced, typically by delaying the two spectrally sheared copies with respect to one another.

Theory

Flow chart describing the SPIDER reconstruction algorithm SPIDER reconstruction flow chart.jpg
Flow chart describing the SPIDER reconstruction algorithm

The intensity of the interference pattern from two time-delayed spectrally sheared pulses can be written as

,

where is the analytic signal representing the unknown (upconverted) field being measured, is the spectral shear, is the time delay, is the spectral intensity and is the spectral phase. For a sufficiently large delay (from 10 to 1000 times the Fourier transform limited [FTL] pulse duration), the interference of the two time-delayed fields results in a cosine modulation with a nominal spacing of ; and any dispersion of the pulse results in minor deviations in the nominal fringe spacing. Effectively it is these deviations in the nominal phase spacing that yield the dispersion of the test pulse .

The unknown spectral phase of the pulse can be extracted using a simple, direct algebraic algorithm first described by Takeda. [1] The first step involves Fourier transforming the interferogram into the pseudo time domain:

,

where is a 'direct current' (dc) term centred at with a width inversely proportional to the spectral bandwidth, and are two 'alternating current' (ac) sidebands resulting from the interference of the two fields. The dc term contains information about the spectral intensity only, whereas the ac sidebands contain information about the spectral intensity and phase of the pulse (since the ac sidebands are Hermitian conjugates of each other, they contain the same information).

One of the ac sidebands is filtered out and inverse Fourier transformed back into the frequency domain, where the interferometric spectral phase can be extracted:

.

The final exponential term, resulting from the delay between the two interfering fields, can be obtained and removed from a calibration trace, which is achieved by interfering two unsheared pulses with the same time delay (this is typically performed by measuring the interference pattern of the two fundamental pulses which have the same time-delay as the upconverted pulses). This enables the SPIDER phase to be extracted simply by taking the argument of the calibrated interferometric term:

.

There are several methods to reconstruct the spectral phase from the SPIDER phase, the simplest, most intuitive and commonly used method is to note that the above equation looks similar to a finite difference of the spectral phase (for small shears) and thus can be integrated using the trapezium rule:

.

This method is exact for reconstructing group delay dispersion (GDD) and third order dispersion (TOD); the accuracy for higher order dispersion depends on the shear: smaller shear results in higher accuracy.

An alternative method us via concatenation of the SPIDER phase:

for integer and concatenation grid . Note that in the absence of any noise, this would provide an exact reproduction of the spectral phase at the sampled frequencies. However, if falls to a sufficiently low value at some point on the concatenation grid, then the extracted phase difference at that point is undefined and the relative phase between adjacent spectral points is lost.

The spectral intensity can be found via a quadratic equation using the intensity of the dc and ac terms (filtered independently via a similar method above) or more commonly from an independent measurement (typically the intensity of the dc term from the calibration trace), since this provides the best signal to noise and no distortion from the upconversion process (e.g. spectral filtering from the phase matching function of a 'thick' crystal).

Alternative techniques

Spatially encoded arrangement for SPIDER (SEA-SPIDER) is a variant of SPIDER. [2] [3] [4] [5] The spectral phase of an ultrashort laser pulse is encoded into a spatial fringe pattern rather than a spectral fringe pattern.

Other techniques are frequency-resolved optical gating, streak camera with picosecond response times, and multiphoton intrapulse interference phase scan (MIIPS), a method to characterize and manipulate the ultrashort pulse.

Micro-SPIDER is an implementation of SPIDER in which the spectral shear required for a SPIDER measurement is generated in a thick nonlinear crystal with a carefully engineered phase-matching function. [6] [7]

See also

Related Research Articles

In signal processing, group delay and phase delay are two related ways of describing how a signal's frequency components are delayed in time when passing through a linear time-invariant (LTI) system. Phase delay describes the time shift of a sinusoidal component. Group delay describes the time shift of the envelope of a wave packet, a "pack" or "group" of oscillations centered around one frequency that travel together, formed for instance by multiplying a sine wave by an envelope.

<span class="mw-page-title-main">Chirp</span> Frequency swept signal

A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications. This signal type is biologically inspired and occurs as a phenomenon due to dispersion. It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW).

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

<span class="mw-page-title-main">Transmittance</span> Effectiveness of a material in transmitting radiant energy

In optical physics, transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.

In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.

<span class="mw-page-title-main">Linear time-invariant system</span> Mathematical model which is both linear and time-invariant

In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (xh)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers.

In physics, the Hanbury Brown and Twiss (HBT) effect is any of a variety of correlation and anti-correlation effects in the intensities received by two detectors from a beam of particles. HBT effects can generally be attributed to the wave–particle duality of the beam, and the results of a given experiment depend on whether the beam is composed of fermions or bosons. Devices which use the effect are commonly called intensity interferometers and were originally used in astronomy, although they are also heavily used in the field of quantum optics.

A resistor–inductor circuit, or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source. It is one of the simplest analogue infinite impulse response electronic filters.

<span class="mw-page-title-main">Chirped pulse amplification</span>

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.

Self-phase modulation (SPM) is a nonlinear optical effect of light–matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum.

Frequency-resolved optical gating (FROG) is a general method for measuring the spectral phase of ultrashort laser pulses, which range from subfemtosecond to about a nanosecond in length. Invented in 1991 by Rick Trebino and Daniel J. Kane, FROG was the first technique to solve this problem, which is difficult because, ordinarily, to measure an event in time, a shorter event is required with which to measure it. For example, to measure a soap bubble popping requires a strobe light with a shorter duration to freeze the action. Because ultrashort laser pulses are the shortest events ever created, before FROG, it was thought by many that their complete measurement in time was not possible. FROG, however, solved the problem by measuring an "auto-spectrogram" of the pulse, in which the pulse gates itself in a nonlinear-optical medium and the resulting gated piece of the pulse is then spectrally resolved as a function of the delay between the two pulses. Retrieval of the pulse from its FROG trace is accomplished by using a two-dimensional phase-retrieval algorithm.

<span class="mw-page-title-main">Instantaneous phase and frequency</span> Electrical engineering concept

Instantaneous phase and frequency are important concepts in signal processing that occur in the context of the representation and analysis of time-varying functions. The instantaneous phase (also known as local phase or simply phase) of a complex-valued function s(t), is the real-valued function:

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

In spectroscopy, the Autler–Townes effect, is a dynamical Stark effect corresponding to the case when an oscillating electric field is tuned in resonance to the transition frequency of a given spectral line, and resulting in a change of the shape of the absorption/emission spectra of that spectral line. The AC Stark effect was discovered in 1955 by American physicists Stanley Autler and Charles Townes.

Multiphoton intrapulse interference phase scan (MIIPS) is a method used in ultrashort laser technology that simultaneously measures, and compensates femtosecond laser pulses using an adaptive pulse shaper. When an ultrashort laser pulse reaches a duration of less than a few hundred femtosecond, it becomes critical to characterize its duration, its temporal intensity curve, or its electric field as a function of time. Classical photodetectors measuring the intensity of light are still too slow to allow for a direct measurement, even with the fastest photodiodes or streak cameras.

The method of reassignment is a technique for sharpening a time-frequency representation by mapping the data to time-frequency coordinates that are nearer to the true region of support of the analyzed signal. The method has been independently introduced by several parties under various names, including method of reassignment, remapping, time-frequency reassignment, and modified moving-window method. In the case of the spectrogram or the short-time Fourier transform, the method of reassignment sharpens blurry time-frequency data by relocating the data according to local estimates of instantaneous frequency and group delay. This mapping to reassigned time-frequency coordinates is very precise for signals that are separable in time and frequency with respect to the analysis window.

Metal-mesh optical filters are optical filters made from stacks of metal meshes and dielectric. They are used as part of an optical path to filter the incoming light to allow frequencies of interest to pass while reflecting other frequencies of light.

In the field of time–frequency analysis, several signal formulations are used to represent the signal in a joint time–frequency domain.

<span class="mw-page-title-main">Double-blind frequency-resolved optical gating</span>

Double-blind frequency-resolved optical gating is a method for simultaneously measuring two unknown ultrashort laser pulses. Well established ultrafast measurement techniques such as frequency-resolved optical gating and its simplified version GRENOUILLE can only measure one unknown ultrashort laser pulse at a time. Another version of FROG, called cross-correlation FROG (XFROG), also measures only one pulse, but it involves two pulses: a known reference pulse and the unknown pulse to be measured.

Spectral interferometry (SI) or frequency-domain interferometry is a linear technique used to measure optical pulses, with the condition that a reference pulse that was previously characterized is available. This technique provides information about the intensity and phase of the pulses. SI was first proposed by Claude Froehly and coworkers in the 1970s.

References

  1. Takeda, Mitsuo; Ina, Hideki; Kobayashi, Seiji (1982). "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry". Journal of the Optical Society of America. 72 (1): 156. Bibcode:1982JOSA...72..156T. doi:10.1364/JOSA.72.000156. ISSN   0030-3941.
  2. Kosik, E.M.; Radunsky, A.; Walmsley, I.A.; Dorrer, C. (2005), "Interferometric technique for measuring broadband ultrashort pulses at the sampling limit", Optics Letters, 30 (3): 326–328, Bibcode:2005OptL...30..326K, doi:10.1364/OL.30.000326, PMID   15751900
  3. Wyatt, A.S.; Walmsley, I.A.; Stibenz, G.; Steinmeyer, G. (2006), "Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction", Optics Letters, 31 (12): 1914–1916, Bibcode:2006OptL...31.1914W, doi:10.1364/OL.31.001914, PMID   16729113
  4. Witting, T.; Austin, D.R.; Walmsley, I.A. (2009), "Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization.", Optics Letters, 34 (7): 881–883, Bibcode:2009OptL...34..881W, doi:10.1364/OL.34.000881, PMID   19340158
  5. Wyatt, Adam S.; Grün, Alexander; Bates, Philip K.; Chalus, Olivier; Biegert, Jens; Walmsley, Ian A. (2011). "Accuracy measurements and improvement for complete characterization of optical pulses from nonlinear processes via multiple spectral-shearing interferometry". Optics Express. 19 (25): 25355–66. Bibcode:2011OExpr..1925355W. doi: 10.1364/OE.19.025355 . ISSN   1094-4087. PMID   22273927.
  6. Radunsky, Aleksander S.; Walmsley, Ian A.; Gorza, Simon-Pierre; Wasylczyk, Piotr (2006). "Compact spectral shearing interferometer for ultrashort pulse characterization". Optics Letters. 32 (2): 181–3. doi:10.1364/OL.32.000181. ISSN   0146-9592. PMID   17186057.
  7. Radunsky, Aleksander S.; Kosik Williams, Ellen M.; Walmsley, Ian A.; Wasylczyk, Piotr; Wasilewski, Wojciech; U'Ren, Alfred B.; Anderson, Matthew E. (2006). "Simplified spectral phase interferometry for direct electric-field reconstruction by using a thick nonlinear crystal". Optics Letters. 31 (7): 1008–10. Bibcode:2006OptL...31.1008R. doi:10.1364/OL.31.001008. ISSN   0146-9592. PMID   16599239.

Further reading