Spidernaut

Last updated
NASA Spidernaut robot render. Spidernaut.gif
NASA Spidernaut robot render.

The Spidernaut is a concept for an extra-vehicular robot developed by NASA's Lyndon B. Johnson Space Center.

The Spidernaut was originally developed and designed in 2005 as part of a group of robots designed to assemble solar arrays on the moon, working as a team independent of human control. [1] As upcoming space science platforms and vehicles are considered unwieldy to launch constructed as self-contained payloads, the ability to constructing and maintaining these structures in orbit presents unique challenges which may be overcome by Extra-Vehicular Robotics (EVR), such as the Spidernaut. The usage of multiple legs allows for more gentle and even distribution of loads while EVRs climb across space platforms, and mitigate torques which may spin the platform. [2]

The design of the Spidernaut's software was led by a team at Carnegie Mellon University, which included ensuring that the programming of the spidernaut would not result in any major problems, such as trapping itself inside a structure it has built. Three prototype Spidernauts were completed in 2005 within the span of nine months. [3]

Related Research Articles

<span class="mw-page-title-main">Ames Research Center</span> Research center operated by NASA

The Ames Research Center (ARC), also known as NASA Ames, is a major NASA research center at Moffett Federal Airfield in California's Silicon Valley. It was founded in 1939 as the second National Advisory Committee for Aeronautics (NACA) laboratory. That agency was dissolved and its assets and personnel transferred to the newly created National Aeronautics and Space Administration (NASA) on October 1, 1958. NASA Ames is named in honor of Joseph Sweetman Ames, a physicist and one of the founding members of NACA. At last estimate NASA Ames had over US$3 billion in capital equipment, 2,300 research personnel and a US$860 million annual budget.

<span class="mw-page-title-main">Goddard Space Flight Center</span> NASAs first space research laboratory

The Goddard Space Flight Center (GSFC) is a major NASA space research laboratory located approximately 6.5 miles (10.5 km) northeast of Washington, D.C. in Greenbelt, Maryland, United States. Established on May 1, 1959 as NASA's first space flight center, GSFC employs about 10,000 civil servants and contractors. Named for American rocket propulsion pioneer Robert H. Goddard, it is one of ten major NASA field centers. GSFC is partially within the former Goddard census-designated place; it has a Greenbelt mailing address.

The Centennial Challenges are NASA space competition inducement prize contests for non-government-funded technological achievements by American teams.

Topcoder is a crowdsourcing company with an open global community of designers, developers, data scientists, and competitive programmers. Topcoder pays community members for their work on the projects and sells community services to corporate, mid-size, and small-business clients. Topcoder also organizes the annual Topcoder Open tournament and a series of smaller regional events.

<span class="mw-page-title-main">Michael L. Gernhardt</span> NASA astronaut and manager of Environmental Physiology Laboratory

Michael Landon Gernhardt is a NASA astronaut and manager of the Environmental Physiology Laboratory, and principal investigator of the Prebreathe Reduction Program (PRP) at the Lyndon B. Johnson Space Center.

<span class="mw-page-title-main">Snakebot</span> Snake-like robot

The SnakeBot, also known as a snake robot, is a biomorphic hyper-redundant robot that resembles a biological snake. Snake robots come in many shapes and sizes, from as long as four stories to a medical SnakeBot developed at Carnegie Mellon University that is thin enough to maneuver around organs inside a human chest cavity. Though SnakeBots can very greatly in size and design, there are two qualities that all SnakeBot share. The small cross-section-to-length ratios allow them to move into and maneuver through tight spaces and their ability to change the shape of their bodies allows them to perform a wide range of behaviors, such as climbing stairs or tree trunks. Additionally, many snake robots are constructed by chaining together several independent links. This redundancy can make them resistant to failure because they can continue to operate even if parts of their body are destroyed. Properties such as high terrainability, redundancy, and the ability to completely seal their bodies make snake robots particularly notable for practical applications and hence as a research topic. A SnakeBot is different from a snake-arm robot in that the SnakeBot robot types are usually more self-contained, where a snake-arm robot usually has remote mechanicals from the arm itself, possibly connected to a larger system.

<span class="mw-page-title-main">Canadarm</span> Robotic arm used to manoeuvre and capture mission payloads on the Space Shuttle

Canadarm or Canadarm1 is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, manoeuvre, and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the shuttle for damage to the thermal protection system.

<span class="mw-page-title-main">Dextre</span> Robotic Arm

Dextre, also known as the Special Purpose Dexterous Manipulator (SPDM), is a two-armed robot, or telemanipulator, which is part of the Mobile Servicing System on the International Space Station (ISS), and does repairs that would otherwise require astronauts to do spacewalks. It was launched on March 11, 2008, on the mission STS-123.

<span class="mw-page-title-main">Robonaut</span> Humanoid robot

A robonaut is a humanoid robot, part of a development project conducted by the Dexterous Robotics Laboratory at NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Robonaut differs from other current space-faring robots in that, while most current space robotic systems are designed to move large objects, Robonaut's tasks require more dexterity.

<span class="mw-page-title-main">Crew Exploration Vehicle</span> Planned orbiter component of NASAs cancelled Project Constellation; became Orion crew vehicle

The Crew Exploration Vehicle (CEV) was a component of the U.S. NASA Vision for Space Exploration plan. A competition was held to design a spacecraft that could carry humans to the destinations envisioned by the plan. The winning design was the Orion spacecraft.

<span class="mw-page-title-main">Desert Research and Technology Studies</span> Field trials of technologies for manned planetary exploration

NASA's Desert Research and Technology Studies is a group of teams which perform an annual series of field trials seeking to demonstrate and test candidate technologies and systems for human exploration of the surface of the Moon, Mars, or other rocky bodies.

<span class="mw-page-title-main">Elevator:2010</span>

Elevator:2010 was an inducement prize contest with the purpose of developing space elevator and space elevator-related technologies. Elevator:2010 organized annual competitions for climbers, ribbons and power-beaming systems, and was operated by a partnership between Spaceward Foundation and the NASA Centennial Challenges.

<span class="mw-page-title-main">Suitport</span> Alternative technology to enable extravehicular activity

A suitport or suitlock is an alternative technology to an airlock, designed for use in hazardous environments including in human spaceflight, especially planetary surface exploration. Suitports present advantages over traditional airlocks in terms of mass, volume, and ability to mitigate contamination by—and of—the local environment.

NASA spin-off technologies are commercial products and services which have been developed with the help of NASA, through research and development contracts, such as Small Business Innovation Research (SBIR) or STTR awards, licensing of NASA patents, use of NASA facilities, technical assistance from NASA personnel, or data from NASA research. Information on new NASA technology that may be useful to industry is available in periodical and website form in "NASA Tech Briefs", while successful examples of commercialization are reported annually in the NASA publication Spinoffs. The publication has documented more than 2,000 technologies over time.

<span class="mw-page-title-main">Space architecture</span> Architecture of off-planet habitable structures

Space architecture is the theory and practice of designing and building inhabited environments in outer space. This mission statement for space architecture was developed at the World Space Congress in Houston in 2002 by members of the Technical Aerospace Architecture Subcommittee of the American Institute of Aeronautics and Astronautics (AIAA). The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering, but also involves diverse disciplines such as physiology, psychology, and sociology.

<span class="mw-page-title-main">US Orbital Segment</span> US components of the International Space Station

The US Orbital Segment (USOS) is the name given to the components of the International Space Station (ISS) constructed and operated by the United States National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Canadian Space Agency (CSA) and Japan Aerospace Exploration Agency (JAXA). The segment consists of eleven pressurized components and various external elements, almost all of which were delivered by the Space Shuttle.

<span class="mw-page-title-main">For Inspiration and Recognition of Science and Technology</span> Engineering societies based in the United States

For Inspiration and Recognition of Science and Technology (FIRST) is an international youth organization that operates the FIRST Robotics Competition, FIRST LEGO League Challenge, FIRST LEGO League Explore, FIRST LEGO League Discover, and FIRST Tech Challenge competitions. Founded by Dean Kamen and Woodie Flowers in 1989, its expressed goal is to develop ways to inspire students in engineering and technology fields. Its philosophy is expressed by the organization as Coopertition and Gracious Professionalism. FIRST also operates FIRST Place, a research facility at FIRST Headquarters in Manchester, New Hampshire, where it holds educational programs and day camps for students and teachers.

<span class="mw-page-title-main">Integrated cargo carrier</span> Space Shuttle module

Integrated Cargo Carrier (ICC) was a project, started in 1997 by the companies Spacehab and Airbus DS Space Systems, to develop a family of flight proven and certified cross-the-bay cargo carriers designed to fly inside the Space Shuttle cargo bay, installed either horizontally or vertically, and able to carry up to 8000 lbs. of unpressurized cargo into orbit. Airbus owns the ICC fleet of carriers.

<span class="mw-page-title-main">Astronaut training</span> Preparing astronauts for space missions

Astronaut training describes the complex process of preparing astronauts in regions around the world for their space missions before, during and after the flight, which includes medical tests, physical training, extra-vehicular activity (EVA) training, procedure training, rehabilitation process, as well as training on experiments they will accomplish during their stay in space.

References

  1. "Autonomous Robots Take On Dangerous Warehouse Jobs | NASA Spinoff". spinoff.nasa.gov. Retrieved 2024-02-17.
  2. "Spidernaut: Overcoming New Challenges". Archived from the original on December 5, 2006. Retrieved February 17, 2006.
  3. admin (2020-10-10). "Meet Spidernaut, NASA's arachnid robot prototype". Space Center Houston. Retrieved 2024-02-17.