Spidron

Last updated
This article discusses the geometric figure; for the science-fiction character see Spidron (character).
First spidron created by Daniel Erdely in 1979, consisting of equilateral triangles and the symmetrical obtuse isosceles triangles which together form right triangles Spidron Classic.jpg
First spidron created by Dániel Erdély in 1979, consisting of equilateral triangles and the symmetrical obtuse isosceles triangles which together form right triangles

In geometry, a spidron is a continuous flat geometric figure composed entirely of triangles, where, for every pair of joining triangles, each has a leg of the other as one of its legs, and neither has any point inside the interior of the other. A deformed spidron is a three-dimensional figure sharing the other properties of a specific spidron, as if that spidron were drawn on paper, cut out in a single piece, and folded along a number of legs.

Contents

Origin and development

Spidron hexagon, similar to the 1979 image Spidron Hexagon.JPG
Spidron hexagon, similar to the 1979 image

A standard spidron consists of two alternating, adjoining sequences of equilateral and isosceles triangles. [1]

It was first modelled in 1979 by Dániel Erdély, as a homework presented to Ernő Rubik, for Rubik's design class, at the Hungarian University of Arts and Design (now: Moholy-Nagy University of Art and Design). Erdély also gave the name "Spidron" to it, when he discovered it in the early 70s. [1] The name originates from the English names of spider and spiral, because the shape is reminiscent of a spider web. [2] The term ends with the affix "-on" as in polygon. [1]

A spidron is a plane figure consisting of an alternating sequence of equilateral and isosceles (30°, 30°, 120°) triangles. Within the figure, one side of a regular triangle coincides with one of the sides of an isosceles triangle, while another side coincides with the hypotenuse of another, smaller isosceles triangle. The sequence can be repeated any number of times in the direction of the smaller and smaller triangles, and the entire figure is centrally projected through the mid-point of the base of the largest unilateral triangle. [3]

In his initial work Erdély started with a hexagon. He combined every corner with the after-next one. In his mathematical analysis of spidrons Stefan Stenzhorn demonstrated that it is possible to create a spidron with every regular Polygon greater than four. Furthermore, you can vary the number of points to the next combination. Stenzhorn reasoned that after all the initial hexagon-spidron is just the special case of a general spidron. [4]

In a two-dimensional plane a tessellation with hexagon-spidrons is possible. The form is known from many works by M.C. Escher, who devoted himself to such bodies of high symmetry. Due to their symmetry spidrons are also an interesting object for mathematicians.

The spidrons can appear in a very large number of versions, and the different formations make possible the development of a great variety of plane, spatial and mobile applications. These developments are suitable to perform aesthetic and practical functions that are defined in advance by the consciously selected arrangements of all the possible characteristics of symmetry. The spidron system is under the protection of several know-how and industrial pattern patents; Spidron is a registered trademark. It was awarded a gold medal at the exhibition Genius Europe in 2005. It has been presented in a number of art magazines, conferences and international exhibitions. During the last two years it has also appeared, in several versions, as a public area work. Since spidron-system is the personal work by Dániel Erdély but in the development of the individual formations he worked together with several Hungarian, Dutch, Canadian and American colleagues, the exhibition is a collective product in a sense, several works and developments are a result of an international team-work.

The spidron is constructed from two semi-spidrons sharing a long side, with one rotated 180 degrees to the other. If the second semi-spidron is reflected in the long side instead of rotated, the result is a "hornflake". Deformed spidrons or hornflakes can be used to construct polyhedra called spidrohedra or hornhedra. Some of these polyhedra are space fillers. [5]

A semi-spidron may have infinitely many triangles. Such spidronized polyhedra have infinitely many faces and are examples of apeirohedra.

Octagon spidron created by Stenzhorn (2009) Spidron Stefan Stenzhorn.jpg
Octagon spidron created by Stenzhorn (2009)

Practical use

Considering the use of spidrons Daniel Erdély enumerated several possible applications:

It has been raised repeatedly that several layers of spidron reliefs could be used as shock dampers or crumple zones in vehicles. Its space-filling properties make it suitable for the construction of building blocks or toys. The surface could be used to create an adjustable acoustic wall or a system of solar cells that follow the sun in a simple manner. Various folding buildings and static structures could also be developed on the basis of my geometric investigation which may have utility in space travel. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Bipyramid</span> Polyhedron formed by joining mirroring pyramids base-to-base

A (symmetric) n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its mirror image base-to-base. An n-gonal bipyramid has 2n triangle faces, 3n edges, and 2 + n vertices.

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. If all the rectangles are themselves square, it is an Archimedean solid. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

<span class="mw-page-title-main">Hexagon</span> Shape with six sides

In geometry, a hexagon is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°.

<span class="mw-page-title-main">Tessellation</span> Tiling of a plane in mathematics

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellation can be generalized to higher dimensions and a variety of geometries.

<span class="mw-page-title-main">Square pyramid</span> 1st Johnson solid; pyramid with a square base

In geometry, square pyramid is a pyramid that has four triangles, and one square as the base, from which there are five faces in total. As for an apex that is perpendicularly above the center of the base, it is a right square pyramid that has four isosceles triangles; otherwise, it is an oblique square pyramid. When all the edges have the same length, the four triangular faces become equilateral, an equilateral square pyramid.

<span class="mw-page-title-main">Chirality (mathematics)</span> Property of an object that is not congruent to its mirror image

In geometry, a figure is chiral if it is not identical to its mirror image, or, more precisely, if it cannot be mapped to its mirror image by rotations and translations alone. An object that is not chiral is said to be achiral.

<span class="mw-page-title-main">Hexagonal bipyramid</span> Polyhedron; 2 hexagonal pyramids joined base-to-base

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

<span class="mw-page-title-main">Triangular prism</span> Prism with a 3-sided base

In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is oblique. A uniform triangular prism is a right triangular prism with equilateral bases, and square sides.

<span class="mw-page-title-main">Hexagonal antiprism</span> Antiprism with 6-sided caps

In geometry, the hexagonal antiprism is the 4th in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps.

<span class="mw-page-title-main">Triangular tiling</span> Regular tiling of the plane

In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilateral triangle is 60 degrees, six triangles at a point occupy a full 360 degrees. The triangular tiling has Schläfli symbol of {3,6}.

<span class="mw-page-title-main">Truncated hexagonal tiling</span>

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

<span class="mw-page-title-main">Rhombitrihexagonal tiling</span> Semiregular tiling of the Euclidean plane

In geometry, the rhombitrihexagonal tiling is a semiregular tiling of the Euclidean plane. There are one triangle, two squares, and one hexagon on each vertex. It has Schläfli symbol of rr{3,6}.

<span class="mw-page-title-main">Quarter cubic honeycomb</span>

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

<span class="mw-page-title-main">Disphenoid</span> Tetrahedron whose faces are all congruent

In geometry, a disphenoid is a tetrahedron whose four faces are congruent acute-angled triangles. It can also be described as a tetrahedron in which every two edges that are opposite each other have equal lengths. Other names for the same shape are isotetrahedron, sphenoid, bisphenoid, isosceles tetrahedron, equifacial tetrahedron, almost regular tetrahedron, and tetramonohedron.

<span class="mw-page-title-main">Icosahedron</span> Polyhedron with 20 faces

In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Ancient Greek εἴκοσι (eíkosi) 'twenty', and ἕδρα (hédra) 'seat'. The plural can be either "icosahedra" or "icosahedrons".

References

  1. 1 2 3 Peterson, Ivars (2006). "Swirling Seas, Crystal Balls". ScienceNews.org. Archived from the original on February 28, 2007. Retrieved 2007-02-14.
  2. "Spidrons", Jugend-forscht.de(in German).
  3. 1 2 Erdély, Daniel (2004). "Concept of the Spidron System" (PDF). Archived from the original (PDF) on 2011-12-15. Retrieved 2011-12-28. In: Proceedings of Sprout-Selecting Conference: Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching. C. Sárvári, ed. University of Pécs, Pécs, Hungary.
  4. [ permanent dead link ]. Mathematical description of spidrons by Stefan Stenzhorn (in German).
  5. Erdély, Daniel.(2000). "Spidron System". Symmetry: Culture and Science. Vol. 11, Nos. 1-4. pp.307-316.