Spin squeezing

Last updated

Spin squeezing is a quantum process that decreases the variance of one of the angular momentum components in an ensemble of particles with a spin. The quantum states obtained are called spin squeezed states. [1] Such states have been proposed for quantum metrology, to allow a better precision for estimating a rotation angle than classical interferometers. [2]

Contents

Mathematical definition

Spin squeezed states for an ensemble of spins have been defined analogously to squeezed states of a bosonic mode. [3] A quantum state always obeys the Heisenberg uncertainty relation

where are the collective angular momentum components defined as and are the single particle angular momentum components. The state is spin-squeezed in the -direction, if the variance of the -component is smaller than the square root of the right-hand side of the inequality above

It is important that is the direction of the mean spin. A different definition was based on using states with a reduced spin-variance for metrology. [4]

Relations to quantum entanglement

Spin squeezed states can be proven to be entangled based on measuring the spin length and the variance of the spin in an orthogonal direction. [5] Let us define the spin squeezing parameter

,

where is the number of the spin- particles in the ensemble. Then, if is smaller than then the state is entangled. It has also been shown that a higher and higher level of multipartite entanglement is needed to achieve a larger and larger degree of spin squeezing. [6]

Experiments with atomic ensembles

Experiments have been carried out with cold or even room temperature atomic ensembles. [7] [8] In this case, the atoms do not interact with each other. Hence, in order to entangle them, they make them interact with light which is then measured. A 20 dB (100 times) spin squeezing has been obtained in such a system. [9] Simultaneous spin squeezing of two ensembles, which interact with the same light field, has been used to entangle the two ensembles. [10] Spin squeezing can be enhanced by using cavities. [11]

Cold gas experiments have also been carried out with Bose-Einstein Condensates (BEC). [12] [13] [14] In this case, the spin squeezing is due to the interaction between the atoms.

Most experiments have been carried out using only two internal states of the particles, hence, effectively with spin- particles. There are also experiments aiming at spin squeezing with particles of a higher spin. [15] [16] Nuclear-electron spin squeezing within the atoms, rather than interatomic spin squeezing, has also been created in room temperature gases. [17]

Creating large spin squeezing

Experiments with atomic ensembles are usually implemented in free-space with Gaussian laser beams. To enhance the spin squeezing effect towards generating non-Gaussian states, [18] which are metrologically useful, the free-space apparatuses are not enough. Cavities and nanophotonic waveguides have been used to enhance the squeezing effect with less atoms. [19] For the waveguide systems, the atom-light coupling and the squeezing effect can be enhanced using the evanescent field near to the waveguides, and the type of atom-light interaction can be controlled by choosing a proper polarization state of the guided input light, the internal state subspace of the atoms and the geometry of the trapping shape. Spin squeezing protocols using nanophotonic waveguides based on the birefringence effect [20] and the Faraday effect [21] have been proposed. By optimizing the optical depth or cooperativity through controlling the geometric factors mentioned above, the Faraday protocol demonstrates that, to enhance the squeezing effect, one needs to find a geometry that generates weaker local electric field at the atom positions. [21] This is counterintuitive, because usually to enhance atom-light coupling, a strong local field is required. But it opens the door to perform very precise measurement with little disruptions to the quantum system, which cannot be simultaneously satisfied with a strong field.

Generalized spin squeezing

In entanglement theory, generalized spin squeezing also refers to any criterion that is given with the first and second moments of angular momentum coordinates, and detects entanglement in a quantum state. For a large ensemble of spin-1/2 particles a complete set of such relations have been found, [22] which have been generalized to particles with an arbitrary spin. [23] Apart from detecting entanglement in general, there are relations that detect multipartite entanglement. [6] [24] Some of the generalized spin-squeezing entanglement criteria have also a relation to quantum metrological tasks. For instance, planar squeezed states can be used to measure an unknown rotation angle optimally. [25]

Related Research Articles

<span class="mw-page-title-main">Quantum entanglement</span> Correlation between quantum systems

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in such a way that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

<span class="mw-page-title-main">Squeezed coherent state</span> Type of quantum state

In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude and in the mode of a light wave. The product of the standard deviations of two such operators obeys the uncertainty principle:

A Bell test, also known as Bell inequality test or Bell experiment, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Albert Einstein's concept of local realism. Named for John Stewart Bell, the experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. To date, all Bell tests have found that the hypothesis of local hidden variables is inconsistent with the way that physical systems behave.

<span class="mw-page-title-main">Optical parametric oscillator</span>

An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.

<span class="mw-page-title-main">Topological order</span> Type of order at absolute zero

In physics, topological order is a kind of order in the zero-temperature phase of matter. Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders cannot change into each other without a phase transition.

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

The Bose–Hubbard model gives a description of the physics of interacting spinless bosons on a lattice. It is closely related to the Hubbard model that originated in solid-state physics as an approximate description of superconducting systems and the motion of electrons between the atoms of a crystalline solid. The model was introduced by Gersch and Knollman in 1963 in the context of granular superconductors. The model rose to prominence in the 1980s after it was found to capture the essence of the superfluid-insulator transition in a way that was much more mathematically tractable than fermionic metal-insulator models.

In quantum optics, a NOON state or N00N state is a quantum-mechanical many-body entangled state:

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.

A composite fermion is the topological bound state of an electron and an even number of quantized vortices, sometimes visually pictured as the bound state of an electron and, attached, an even number of magnetic flux quanta. Composite fermions were originally envisioned in the context of the fractional quantum Hall effect, but subsequently took on a life of their own, exhibiting many other consequences and phenomena.

A trion is a localized excitation which consists of three charged particles. A negative trion consists of two electrons and one hole and a positive trion consists of two holes and one electron. The trion itself is a quasiparticle and is somewhat similar to an exciton, which is a complex of one electron and one hole. The trion has a ground singlet state (spin S = 1/2) and an excited triplet state (S = 3/2). Here singlet and triplet degeneracies originate not from the whole system but from the two identical particles in it. The half-integer spin value distinguishes trions from excitons in many phenomena; for example, energy states of trions, but not excitons, are split in an applied magnetic field. Trion states were predicted theoretically in 1958; they were observed experimentally in 1993 in CdTe/Cd1−xZnxTe quantum wells, and later in various other optically excited semiconductor structures. There are experimental proofs of their existence in nanotubes supported by theoretical studies. Despite numerous reports of experimental trion observations in different semiconductor heterostructures, there are serious concerns on the exact physical nature of the detected complexes. The originally foreseen 'true' trion particle has a delocalized wavefunction (at least at the scales of several Bohr radii) while recent studies reveal significant binding from charged impurities in real semiconductor quantum wells.

The Aharonov–Casher effect is a quantum mechanical phenomenon predicted in 1984 by Yakir Aharonov and Aharon Casher, in which a traveling magnetic dipole is affected by an electric field. It is dual to the Aharonov–Bohm effect, in which the quantum phase of a charged particle depends upon which side of a magnetic flux tube it comes through. In the Aharonov–Casher effect, the particle has a magnetic moment and the tubes are charged instead. It was observed in a gravitational neutron interferometer in 1989 and later by fluxon interference of magnetic vortices in Josephson junctions. It has also been seen with electrons and atoms.

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

In quantum mechanics, the cat state, named after Schrödinger's cat, is a quantum state composed of two diametrically opposed conditions at the same time, such as the possibilities that a cat is alive and dead at the same time.

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.

<span class="mw-page-title-main">Sandu Popescu</span> British physicist

Sandu Popescu is a Romanian-British physicist working in the foundations of quantum mechanics and quantum information.

Many-body localization (MBL) is a dynamical phenomenon occurring in isolated many-body quantum systems. It is characterized by the system failing to reach thermal equilibrium, and retaining a memory of its initial condition in local observables for infinite times.

In quantum physics, entanglement depth characterizes the strength of multiparticle entanglement. An entanglement depth means that the quantum state of a particle ensemble cannot be described under the assumption that particles interacted with each other only in groups having fewer than particles. It has been used to characterize the quantum states created in experiments with cold gases.

References

  1. Ma, Jian; Wang, Xiaoguang; Sun, C.P.; Nori, Franco (2011-12-01). "Quantum spin squeezing". Physics Reports. 509 (2–3): 89–165. arXiv: 1011.2978 . Bibcode:2011PhR...509...89M. doi:10.1016/j.physrep.2011.08.003. ISSN   0370-1573. S2CID   119239234.
  2. Gross, Christian (2012-05-14). "Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates". Journal of Physics B: Atomic, Molecular and Optical Physics. 45 (10): 103001. arXiv: 1203.5359 . Bibcode:2012JPhB...45j3001G. doi:10.1088/0953-4075/45/10/103001. ISSN   0953-4075. S2CID   118503993 . Retrieved 2018-03-16.
  3. Kitagawa, Masahiro; Ueda, Masahito (1993-06-01). "Squeezed spin states" (PDF). Physical Review A. 47 (6): 5138–5143. Bibcode:1993PhRvA..47.5138K. doi:10.1103/PhysRevA.47.5138. hdl: 11094/77656 . PMID   9909547.
  4. Wineland, D. J.; Bollinger, J. J.; Itano, W. M.; Moore, F. L.; Heinzen, D. J. (1992-12-01). "Spin squeezing and reduced quantum noise in spectroscopy". Physical Review A. 46 (11): R6797–R6800. Bibcode:1992PhRvA..46.6797W. doi:10.1103/PhysRevA.46.R6797. PMID   9908086.
  5. Sørensen, A.; Duan, L.-M.; Cirac, J. I.; Zoller, P. (2001-01-04). "Many-particle entanglement with Bose–Einstein condensates". Nature. 409 (6816): 63–66. arXiv: quant-ph/0006111 . Bibcode:2001Natur.409...63S. doi:10.1038/35051038. ISSN   1476-4687. PMID   11343111. S2CID   4427235.
  6. 1 2 Sørensen, Anders S.; Mølmer, Klaus (2001-05-14). "Entanglement and Extreme Spin Squeezing". Physical Review Letters. 86 (20): 4431–4434. arXiv: quant-ph/0011035 . Bibcode:2001PhRvL..86.4431S. doi:10.1103/PhysRevLett.86.4431. PMID   11384252. S2CID   206327094.
  7. Hald, J.; Sørensen, J. L.; Schori, C.; Polzik, E. S. (1999-08-16). "Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light". Physical Review Letters. 83 (7): 1319–1322. Bibcode:1999PhRvL..83.1319H. doi:10.1103/PhysRevLett.83.1319.
  8. Sewell, R. J.; Koschorreck, M.; Napolitano, M.; Dubost, B.; Behbood, N.; Mitchell, M. W. (2012-12-19). "Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing". Physical Review Letters. 109 (25): 253605. arXiv: 1111.6969 . Bibcode:2012PhRvL.109y3605S. doi:10.1103/PhysRevLett.109.253605. PMID   23368463. S2CID   45099611.
  9. Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A. (2016-01-28). "Measurement noise 100 times lower than the quantum-projection limit using entangled atoms". Nature. 529 (7587): 505–508. Bibcode:2016Natur.529..505H. doi:10.1038/nature16176. ISSN   1476-4687. PMID   26751056. S2CID   2139293.
  10. Julsgaard, Brian; Kozhekin, Alexander; Polzik, Eugene S. (2001-01-27). "Experimental long-lived entanglement of two macroscopic objects". Nature. 413 (6854): 400–403. arXiv: quant-ph/0106057 . Bibcode:2001Natur.413..400J. doi:10.1038/35096524. ISSN   1476-4687. PMID   11574882. S2CID   4343736.
  11. Leroux, Ian D.; Schleier-Smith, Monika H.; Vuletić, Vladan (2010-02-17). "Implementation of Cavity Squeezing of a Collective Atomic Spin". Physical Review Letters. 104 (7): 073602. arXiv: 0911.4065 . Bibcode:2010PhRvL.104g3602L. doi:10.1103/PhysRevLett.104.073602. PMID   20366881. S2CID   290082.
  12. Estève, J.; Gross, C.; Weller, A.; Giovanazzi, S.; Oberthaler, M. K. (2008-10-30). "Squeezing and entanglement in a Bose–Einstein condensate". Nature. 455 (7217): 1216–1219. arXiv: 0810.0600 . Bibcode:2008Natur.455.1216E. doi:10.1038/nature07332. ISSN   1476-4687. PMID   18830245. S2CID   1424462.
  13. Muessel, W.; Strobel, H.; Linnemann, D.; Hume, D. B.; Oberthaler, M. K. (2014-09-05). "Scalable Spin Squeezing for Quantum-Enhanced Magnetometry with Bose-Einstein Condensates". Physical Review Letters. 113 (10): 103004. arXiv: 1405.6022 . Bibcode:2014PhRvL.113j3004M. doi:10.1103/PhysRevLett.113.103004. PMID   25238356. S2CID   1726295.
  14. Riedel, Max F.; Böhi, Pascal; Li, Yun; Hänsch, Theodor W.; Sinatra, Alice; Treutlein, Philipp (2010-04-22). "Atom-chip-based generation of entanglement for quantum metrology". Nature. 464 (7292): 1170–1173. arXiv: 1003.1651 . Bibcode:2010Natur.464.1170R. doi:10.1038/nature08988. ISSN   1476-4687. PMID   20357765. S2CID   4302730.
  15. Hamley, C. D.; Gerving, C. S.; Hoang, T. M.; Bookjans, E. M.; Chapman, M. S. (2012-02-26). "Spin-nematic squeezed vacuum in a quantum gas". Nature Physics. 8 (4): 305–308. arXiv: 1111.1694 . Bibcode:2012NatPh...8..305H. doi:10.1038/nphys2245. ISSN   1745-2481. S2CID   56260302.
  16. Behbood, N.; Martin Ciurana, F.; Colangelo, G.; Napolitano, M.; Tóth, Géza; Sewell, R. J.; Mitchell, M. W. (2014-08-25). "Generation of Macroscopic Singlet States in a Cold Atomic Ensemble". Physical Review Letters. 113 (9): 093601. arXiv: 1403.1964 . Bibcode:2014PhRvL.113i3601B. doi:10.1103/PhysRevLett.113.093601. PMID   25215981. S2CID   25825285.
  17. Fernholz, T.; Krauter, H.; Jensen, K.; Sherson, J. F.; Sørensen, A. S.; Polzik, E. S. (2008-08-12). "Spin Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement". Physical Review Letters. 101 (7): 073601. arXiv: 0802.2876 . Bibcode:2008PhRvL.101g3601F. doi:10.1103/PhysRevLett.101.073601. PMID   18764532. S2CID   14858927.
  18. Adesso, Gerardo; Ragy, Sammy; Lee, Antony R. (2014-03-12). "Continuous Variable Quantum Information: Gaussian States and Beyond". Open Systems & Information Dynamics . 21 (1n02): 1440001. arXiv: 1401.4679 . Bibcode:2014arXiv1401.4679A. doi:10.1142/S1230161214400010. ISSN   1230-1612. S2CID   15318256.
  19. Chen, Zilong; Bohnet, J. G.; Weiner, J. M.; Cox, K. C.; Thompson, J. K. (2014). "Cavity-aided nondemolition measurements for atom counting and spin squeezing". Physical Review A. 89 (4): 043837. arXiv: 1211.0723 . Bibcode:2014PhRvA..89d3837C. doi:10.1103/PhysRevA.89.043837. S2CID   119251855.
  20. Qi, Xiaodong; Baragiola, Ben Q.; Jessen, Poul S.; Deutsch, Ivan H. (2016). "Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing". Physical Review A. 93 (2): 023817. arXiv: 1509.02625 . Bibcode:2016PhRvA..93b3817Q. doi:10.1103/PhysRevA.93.023817. S2CID   17366761.
  21. 1 2 Qi, Xiaodong; Jau, Yuan-Yu; Deutsch, Ivan H. (2018-03-16). "Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing of atoms coupled to a nanophotonic waveguide". Physical Review A. 97 (3): 033829. arXiv: 1712.02916 . Bibcode:2016PhRvA..93c3829K. doi:10.1103/PhysRevA.93.033829.
  22. Tóth, Géza; Knapp, Christian; Gühne, Otfried; Briegel, Hans J. (2007-12-19). "Optimal Spin Squeezing Inequalities Detect Bound Entanglement in Spin Models". Physical Review Letters. 99 (25): 250405. arXiv: quant-ph/0702219 . Bibcode:2007PhRvL..99y0405T. doi:10.1103/PhysRevLett.99.250405. PMID   18233503. S2CID   8079498.
  23. Vitagliano, Giuseppe; Hyllus, Philipp; Egusquiza, Iñigo L.; Tóth, Géza (2011-12-09). "Spin Squeezing Inequalities for Arbitrary Spin". Physical Review Letters. 107 (24): 240502. arXiv: 1104.3147 . Bibcode:2011PhRvL.107x0502V. doi:10.1103/PhysRevLett.107.240502. PMID   22242980. S2CID   21073782.
  24. Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten (2014-04-17). "Detecting Multiparticle Entanglement of Dicke States". Physical Review Letters. 112 (15): 155304. arXiv: 1403.4542 . Bibcode:2014PhRvL.112o5304L. doi:10.1103/PhysRevLett.112.155304. PMID   24785048. S2CID   38230188.
  25. He, Q. Y.; Peng, Shi-Guo; Drummond, P. D.; Reid, M. D. (2011-08-11). "Planar quantum squeezing and atom interferometry". Physical Review A. 84 (2): 022107. arXiv: 1101.0448 . Bibcode:2011PhRvA..84b2107H. doi:10.1103/PhysRevA.84.022107. S2CID   7885824.