Spinule

Last updated

Spinules are small spines or thorns [1] (vertebral columns) that are part of biological and manmade structures. The word originates from the Latin word spinula and is often used in botany and zoology.

The presence or absence of spinules, and their shape, can differentiate species and is used to describe and distinguish anatomical features. [2] The development of spinules in the eye may be affected by dopamine, circadian rhythms, and exposure to light or dark environments, according to a studies of controlling mechanisms. [3] [4]

liquid-crystal displays (LCDs) can employ an anisotropic conducting film (ACF) that "consists of an epoxy resin and nickel particles with spinules". [5]

Related Research Articles

Liquid-crystal display Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly, instead using a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden, such as preset words, digits, and seven-segment displays, as in a digital clock. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

Liquid crystal State of matter with properties of both conventional liquids and crystals

Liquid crystals (LCs) are a state of matter which has properties between those of conventional liquids and those of solid crystals. For instance, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many different types of liquid-crystal phases, which can be distinguished by their different optical properties. The contrasting areas in the textures correspond to domains where the liquid-crystal molecules are oriented in different directions. Within a domain, however, the molecules are well ordered. LC materials may not always be in a liquid-crystal state of matter.

Zircon Zirconium silicate, a mineral belonging to the group of nesosilicates

Zircon ( or ) is a mineral belonging to the group of nesosilicates. Its chemical name is zirconium silicate, and its corresponding chemical formula is ZrSiO4. A common empirical formula showing some of the range of substitution in zircon is (Zr1–y, REEy)(SiO4)1–x(OH)4x–y. Zircon forms in silicate melts with large proportions of high field strength incompatible elements. For example, hafnium is almost always present in quantities ranging from 1 to 4%. The crystal structure of zircon is tetragonal crystal system. The natural colour of zircon varies between colourless, yellow-golden, red, brown, blue and green.

Cinnabar Red mercury sulfide mineral

Cinnabar or cinnabarite, likely deriving from the Ancient Greek: κιννάβαρι, is the bright scarlet to brick-red form of mercury(II) sulfide (HgS). It is the most common source ore for refining elemental mercury, and is the historic source for the brilliant red or scarlet pigment termed vermilion and associated red mercury pigments.

Thin-film transistor field-effect transistor device

A thin-film transistor (TFT) is a special type of metal–oxide–semiconductor field-effect transistor (MOSFET) made by depositing thin films of an active semiconductor layer as well as the dielectric layer and metallic contacts over a supporting substrate. A common substrate is glass, because the primary application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk MOSFET transistor, where the semiconductor material typically is the substrate, such as a silicon wafer.

Outliner type of software program to organize texts

An outliner is a specialized type of text editor used to create and edit outlines, which are text files which have a tree structure, for organization. Textual information is contained in discrete sections called "nodes", which are arranged according to their topic–subtopic (parent–child) relationships, sort of like the members of a family tree. When loaded into an outliner, an outline may be collapsed or expanded to display as few or as many levels as desired.

Display may refer to:

LCD projector type of video projector

An LCD projector is a type of video projector for displaying video, images or computer data on a screen or other flat surface. It is a modern equivalent of the slide projector or overhead projector. To display images, LCD projectors typically send light from a metal-halide lamp through a prism or series of dichroic filters that separates light to three polysilicon panels – one each for the red, green and blue components of the video signal. As polarized light passes through the panels, individual pixels can be opened to allow light to pass or closed to block the light. The combination of open and closed pixels can produce a wide range of colors and shades in the projected image.

Soft matter subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations

Soft matter or soft condensed matter is a subfield of condensed matter comprising a variety of physical systems that are deformed or structurally altered by thermal or mechanical stress of the magnitude of thermal fluctuations. They include liquids, colloids, polymers, foams, gels, granular materials, liquid crystals, pillows, flesh, and a number of biological materials. These materials share an important common feature in that predominant physical behaviors occur at an energy scale comparable with room temperature thermal energy. At these temperatures, quantum aspects are generally unimportant. Pierre-Gilles de Gennes, who has been called the "founding father of soft matter," received the Nobel Prize in physics in 1991 for discovering that methods developed for studying order phenomena in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of liquid crystals and polymers.

A thin-film-transistor liquid-crystal display is a variant of a liquid-crystal display (LCD) that uses thin-film-transistor (TFT) technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

Thermochromism property of substances to change color due to a change in temperature

Thermochromism is the property of substances to change color due to a change in temperature. A mood ring is an excellent example of this phenomenon, but thermochromism also has more practical uses, such as baby bottles which change to a different color when cool enough to drink, or kettles which change when water is at or near boiling point. Thermochromism is one of several types of chromism.

Image persistence Temporary effect on LCD and plasma screens

Image persistence, or image retention, is the LCD and plasma display equivalent of screen burn. Unlike screen burn, the effects are usually temporary and often not visible without close inspection. Plasma displays experiencing severe image persistence can result in screen burn-in instead.

Twisted nematic field effect type of thin-film-transistor liquid-crystal display technology

The twisted nematic effect (TN-effect) was a main technology breakthrough that made LCDs practical. Unlike earlier displays, TN-cells did not require a current to flow for operation and used low operating voltages suitable for use with batteries. The introduction of TN-effect displays led to their rapid expansion in the display field, quickly pushing out other common technologies like monolithic LEDs and CRTs for most electronics. By the 1990s, TN-effect LCDs were largely universal in portable electronics, although since then, many applications of LCDs adopted alternatives to the TN-effect such as in-plane switching (IPS) or vertical alignment (VA).

Martin Schadt Swiss physicist

Martin Schadt is a Swiss physicist and inventor.

In chemistry and chemical physics, a mesophase is a state of matter intermediate between liquid and solid. Gelatin is a common example of a partially ordered structure in a mesophase. Further, biological structures such as the lipid bilayers of cell membranes are examples of mesophases.

Insect mouthparts Wikimedia disambiguation page

Insects have a range of mouthparts, adapted to particular modes of feeding. The earliest insects had chewing mouthparts. Specialization has mostly been for piercing and sucking, although a range of specializations exist, as these modes of feeding have evolved a number of times. In this page, the individual mouthparts are introduced for chewing insects. Specializations are generally described thereafter.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

IPS is a screen technology for liquid-crystal displays (LCDs). It was designed to solve the main limitations of the twisted nematic field effect (TN) matrix LCDs which were prevalent in the late 1980s. These limitations included strong viewing angle dependence and low-quality color reproduction. In-plane switching involves arranging and switching the orientation of the molecules of the liquid crystal (LC) layer between the glass substrates. This is done, essentially, parallel to these glass plates.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

Dichroic dyes, electronic dyes, liquid crystalline dyes


During the 20th century, dichroic dyes had been used as electric field responsive colorants for rugged avionics and armored vehicle electronic displays. In general, dichroic dye displays had more predictable performance than twisted nematic liquid crystal displays or plasma displays, until technological advances in nematic displays surpassed the performance of dichroic dyes.

References

  1. Dictionary.com
  2. Entomological Society of Canada (1863-1871), Entomological Society of Canada (1951- ), Entomological Society of Ontario The Canadian entomologist . p. 51. Item notes: v. 19-20 - 1887
  3. Helga Kolb, Harris Ripps, John E. Dowling, Samuel Miao-sin Wu Concepts and challenges in retinal biology: a tribute to John E. Dowling page 531 2001
  4. John Simon Werner, Leo M. Chalupa The visual neurosciences Item notes: v. 2 - 2003 - 1930 pages MIT Press
  5. Interconnection Structure for Liquid Crystal Display IBM Technical Disclosure Bulletin IP.com