Splitting of prime ideals in Galois extensions

Last updated

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

Contents

Definitions

Let L/K be a finite extension of number fields, and let OK and OL be the corresponding ring of integers of K and L, respectively, which are defined to be the integral closure of the integers Z in the field in question.

Finally, let p be a non-zero prime ideal in OK, or equivalently, a maximal ideal, so that the residue OK/p is a field.

From the basic theory of one-dimensional rings follows the existence of a unique decomposition

of the ideal pOL generated in OL by p into a product of distinct maximal ideals Pj, with multiplicities ej.

The field F = OK/p naturally embeds into Fj = OL/Pj for every j, the degree fj = [OL/Pj : OK/p] of this residue field extension is called inertia degree of Pj over p.

The multiplicity ej is called ramification index of Pj over p. If it is bigger than 1 for some j, the field extension L/K is called ramified at p (or we say that p ramifies in L, or that it is ramified in L). Otherwise, L/K is called unramified at p. If this is the case then by the Chinese remainder theorem the quotient OL/pOL is a product of fields Fj. The extension L/K is ramified in exactly those primes that divide the relative discriminant, hence the extension is unramified in all but finitely many prime ideals.

Multiplicativity of ideal norm implies

If fj = ej = 1 for every j (and thus g = [L : K]), we say that psplits completely in L. If g = 1 and f1 = 1 (and so e1 = [L : K]), we say that pramifies completely in L. Finally, if g = 1 and e1 = 1 (and so f1 = [L : K]), we say that p is inert in L.

The Galois situation

In the following, the extension L/K is assumed to be a Galois extension. Then the prime avoidance lemma can be used to show the Galois group acts transitively on the Pj. That is, the prime ideal factors of p in L form a single orbit under the automorphisms of L over K. From this and the unique factorisation theorem, it follows that f = fj and e = ej are independent of j; something that certainly need not be the case for extensions that are not Galois. The basic relations then read

.

and

The relation above shows that [L : K]/ef equals the number g of prime factors of p in OL. By the orbit-stabilizer formula this number is also equal to |G|/|DPj| for every j, where DPj, the decomposition group of Pj, is the subgroup of elements of G sending a given Pj to itself. Since the degree of L/K and the order of G are equal by basic Galois theory, it follows that the order of the decomposition group DPj is ef for every j.

This decomposition group contains a subgroup IPj, called inertia group of Pj, consisting of automorphisms of L/K that induce the identity automorphism on Fj. In other words, IPj is the kernel of reduction map . It can be shown that this map is surjective, and it follows that is isomorphic to DPj/IPj and the order of the inertia group IPj is e.

The theory of the Frobenius element goes further, to identify an element of DPj/IPj for given j which corresponds to the Frobenius automorphism in the Galois group of the finite field extension Fj /F. In the unramified case the order of DPj is f and IPj is trivial, so the Frobenius element is in this case an element of DPj, and thus also an element of G. For varying j, the groups DPj are conjugate subgroups inside G: Recalling that G acts transitively on the Pj, one checks that if maps Pj to Pj', . Therefore, if G is an abelian group, the Frobenius element of an unramified prime P does not depend on which Pj we take. Furthermore, in the abelian case, associating an unramified prime of K to its Frobenius and extending multiplicatively defines a homomorphism from the group of unramified ideals of K into G. This map, known as the Artin map, is a crucial ingredient of class field theory, which studies the finite abelian extensions of a given number field K. [1]

In the geometric analogue, for complex manifolds or algebraic geometry over an algebraically closed field, the concepts of decomposition group and inertia group coincide. There, given a Galois ramified cover, all but finitely many points have the same number of preimages.

The splitting of primes in extensions that are not Galois may be studied by using a splitting field initially, i.e. a Galois extension that is somewhat larger. For example, cubic fields usually are 'regulated' by a degree 6 field containing them.

Example — the Gaussian integers

This section describes the splitting of prime ideals in the field extension Q(i)/Q. That is, we take K = Q and L = Q(i), so OK is simply Z, and OL = Z[i] is the ring of Gaussian integers. Although this case is far from representative — after all, Z[i] has unique factorisation, and there aren't many quadratic fields with unique factorization — it exhibits many of the features of the theory.

Writing G for the Galois group of Q(i)/Q, and σ for the complex conjugation automorphism in G, there are three cases to consider.

The prime p = 2

The prime 2 of Z ramifies in Z[i]:

The ramification index here is therefore e = 2. The residue field is

which is the finite field with two elements. The decomposition group must be equal to all of G, since there is only one prime of Z[i] above 2. The inertia group is also all of G, since

for any integers a and b, as .

In fact, 2 is the only prime that ramifies in Z[i], since every prime that ramifies must divide the discriminant of Z[i], which is 4.

Primes p 1 mod 4

Any prime p ≡ 1 mod 4 splits into two distinct prime ideals in Z[i]; this is a manifestation of Fermat's theorem on sums of two squares. For example:

The decomposition groups in this case are both the trivial group {1}; indeed the automorphism σ switches the two primes (2 + 3i) and (2 3i), so it cannot be in the decomposition group of either prime. The inertia group, being a subgroup of the decomposition group, is also the trivial group. There are two residue fields, one for each prime,

which are both isomorphic to the finite field with 13 elements. The Frobenius element is the trivial automorphism; this means that

for any integers a and b.

Primes p 3 mod 4

Any prime p ≡ 3 mod 4 remains inert in Z[i]; that is, it does not split. For example, (7) remains prime in Z[i]. In this situation, the decomposition group is all of G, again because there is only one prime factor. However, this situation differs from the p = 2 case, because now σ does not act trivially on the residue field

which is the finite field with 72 = 49 elements. For example, the difference between 1+ i and σ(1+ i) = 1 i is 2i, which is certainly not divisible by 7. Therefore, the inertia group is the trivial group {1}. The Galois group of this residue field over the subfield Z/7Z has order 2, and is generated by the image of the Frobenius element. The Frobenius element is none other than σ; this means that

for any integers a and b.

Summary

Prime in ZHow it splits in Z[i]Inertia groupDecomposition group
2Ramifies with index 2GG
p ≡ 1 mod 4Splits into two distinct factors11
p ≡ 3 mod 4Remains inert1G

Computing the factorisation

Suppose that we wish to determine the factorisation of a prime ideal P of OK into primes of OL. The following procedure (Neukirch, p. 47) solves this problem in many cases. The strategy is to select an integer θ in OL so that L is generated over K by θ (such a θ is guaranteed to exist by the primitive element theorem), and then to examine the minimal polynomial H(X) of θ over K; it is a monic polynomial with coefficients in OK. Reducing the coefficients of H(X) modulo P, we obtain a monic polynomial h(X) with coefficients in F, the (finite) residue field OK/P. Suppose that h(X) factorises in the polynomial ring F[X] as

where the hj are distinct monic irreducible polynomials in F[X]. Then, as long as P is not one of finitely many exceptional primes (the precise condition is described below), the factorisation of P has the following form:

where the Qj are distinct prime ideals of OL. Furthermore, the inertia degree of each Qj is equal to the degree of the corresponding polynomial hj, and there is an explicit formula for the Qj:

where hj denotes here a lifting of the polynomial hj to K[X].

In the Galois case, the inertia degrees are all equal, and the ramification indices e1 = ... = en are all equal.

The exceptional primes, for which the above result does not necessarily hold, are the ones not relatively prime to the conductor of the ring OK[θ]. The conductor is defined to be the ideal

it measures how far the order OK[θ] is from being the whole ring of integers (maximal order) OL.

A significant caveat is that there exist examples of L/K and P such that there is no available θ that satisfies the above hypotheses (see for example [2] ). Therefore, the algorithm given above cannot be used to factor such P, and more sophisticated approaches must be used, such as that described in. [3]

An example

Consider again the case of the Gaussian integers. We take θ to be the imaginary unit i, with minimal polynomial H(X) = X2 + 1. Since Z[] is the whole ring of integers of Q(), the conductor is the unit ideal, so there are no exceptional primes.

For P = (2), we need to work in the field Z/(2)Z, which amounts to factorising the polynomial X2 + 1 modulo 2:

Therefore, there is only one prime factor, with inertia degree 1 and ramification index 2, and it is given by

The next case is for P = (p) for a prime p ≡ 3 mod 4. For concreteness we will take P = (7). The polynomial X2 + 1 is irreducible modulo 7. Therefore, there is only one prime factor, with inertia degree 2 and ramification index 1, and it is given by

The last case is P = (p) for a prime p ≡ 1 mod 4; we will again take P = (13). This time we have the factorisation

Therefore, there are two prime factors, both with inertia degree and ramification index 1. They are given by

and

See also

Related Research Articles

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

In number theory, the ideal class group of an algebraic number field K is the quotient group JK/PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

<span class="mw-page-title-main">Ramification (mathematics)</span> Branching out of a mathematical structure

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In algebraic number theory, the different ideal is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It then encodes the ramification data for prime ideals of the ring of integers. It was introduced by Richard Dedekind in 1882.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

<span class="mw-page-title-main">Discriminant of an algebraic number field</span> Measures the size of the ring of integers of the algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to Q, the field of rational numbers.

In mathematics, a profinite integer is an element of the ring

References

  1. Milne, J.S. (2020). Class Field Theory.
  2. Stein, William A. (2002). "Essential Discriminant Divisors". Factoring Primes in Rings of Integers.
  3. Stein 2002 , Method that Always Works