Squad Mission Support System

Last updated

Squad Mission Support System is an unmanned all terrain wheeled vehicle developed by Lockheed Martin.

Contents

History

The SMSS was developed for the US Army as transport and logistics support by Lockheed Martin Missiles and Fire Control division. The SMSS Block 0 could travel up to 15 miles per hour (24 km/h) and carry up to 1,200 pounds (540 kg) in gear. Unloaded, it weighed up to 4,000 lb (1,800 kg) and could potentially be parachuted from an aircraft. It can be driven by an operator or remotely operated, or operate in supervised autonomy. Currently, the SMSS is unarmed, but there are plans to arm it with either RPG or small missile systems.

The SMSS Block 1 went to Afghanistan for a military utility assessment in late 2011. The Block 1 version has a lighter frame, infrared driving lights, a smaller and more efficient sensor package, and insulated exhaust and hydraulics that make them quieter in the field. [1] [2] It is heavier, at 3,800 lb (1,700 kg) unloaded, but can carry a larger, 1,200 lb (540 kg) payload, and has a 125 mi (201 km) operating range. [3] The SMSS can operate autonomously, be programmed to "follow the leader," be tele-operated, or controlled manually by getting on the vehicle and using a joystick to steer. The vehicle has a litter-carrying kit for casualty evacuation. [4]

Four vehicles were deployed to Afghanistan. They were used to resupplying small combat outposts and strongpoints, and construction projects on its larger forward operating base. One unit used the SMSS to carry a total of10,000 lb (4,500 kg) of supplies over the course of two days to a small combat outpost two kilometers away, regularly carrying 2,000-pound loads. One time, soldiers overloaded one vehicle up with filled sandbags, which were estimated to weigh 4,000 lb (1,800 kg) (exceeding Lockheed’s recommended carrying weight of 1,200 pounds), and successfully drove it up a 30-degree slope. While initially planned as a squad-level asset, it was used more at the platoon level. From fielding experiences, Lockheed planned improvements to the system, considering adding another alternator to increase its power output since one group of soldiers in Afghanistan had been trying to use it as a mobile operations center by loading it up with generators and batteries while out on missions. Lockheed is also considering adding a manipulator arm so it can load and unload cargo itself. [5] The deployment to Afghanistan for operational evaluations lasted from January to May 2012. [4]

In February 2013, the SMSS performed a successful demonstration while being controlled by satellite 200 mi (320 km) from its operator. The vehicle had an adjustable-height mast with a Gyrocam 9M, acquiring on-the-move, high-resolution electro-optical and thermal video. Movement and sensor functions were controlled from a remote station via teleoperation. In a simulated mission, the operator provided a pre-planned route and SMSS autonomy allowed navigation with minimal operator intervention, while other autonomous functions, such as follow-me, go-to-point and retro-traverse, were also demonstrated. The demonstration proved that the combination of autonomy, vehicle mobility, surveillance sensors, and satellite communications can provide a means of battlefield situational awareness without human intervention. [6]

From 7-10 October 2013, the SMSS took part in testing, along with other systems, at Fort Benning, Georgia as part of the U.S. Army's Squad Multipurpose Equipment Transport (S-MET) program. The program objective is to find an unmanned robotic platform to transport soldier equipment and charge batteries for their electronic gear. Requirements for the vehicle are to carry 1,000 lb (450 kg) of gear, equal to the amount a nine-man infantry squad would need on a 72-hour mission. Cubic volume is seen as more of a problem for load-carrying unmanned vehicles, as their center of gravity changes when more gear has to be stacked. It has to travel 4 km/h (2.5 mph) for eight-hour marches and speed up in bursts of up to 38 km/h (24 mph) for 200 meters. The proposed S-MET vehicle needs to traverse forward and backward on slopes of up to 30 percent and descending on slopes of 60 percent. Moving on rough terrain was a challenge for the four SMSS vehicles deployed to Afghanistan in 2012; they could not discern between soldiers and obstacles like trees, so they mostly traveled on roads instead of complex terrain. [7] The SMSS was not selected to continue S-MET trials. [8]

On 7 August 2014, the SMSS was used in an exercise at Fort Benning to combine the abilities of both an unmanned ground vehicle and unmanned aerial vehicle. It involved the SMSS and an unmanned K-MAX helicopter, both Lockheed Martin systems, operating in a simulated area deemed too risky for human presence. The K-MAX autonomously transported the SMSS by sling load into the area and set it down over an intended point, releasing it upon command from a remote operator. The K-MAX returned to base, then the SMSS used autonomous operation and limited teleoperation from a remote site to move around the area. Once deployed, the vehicle used a mast-mounted Gyrocam electro-optical sensor and satellite communications (SATCOM) terminal with a data-link for area surveillance. The exercise was intended to demonstrate that large UAVs and UGVs could operate alongside each other by themselves and beyond line-of-sight to perform missions to keep personnel out of harm's way. [9]

Related Research Articles

<span class="mw-page-title-main">Lockheed Martin RQ-3 DarkStar</span> Type of aircraft

The RQ-3 DarkStar is an unmanned aerial vehicle (UAV). Its first flight was on March 29, 1996. The Department of Defense terminated DarkStar in January 1999, after determining the UAV was not aerodynamically stable and was not meeting cost and performance objectives.

An autonomous robot is a robot that acts without recourse to human control. The first autonomous robots environment were known as Elmer and Elsie, which were constructed in the late 1940s by W. Grey Walter. They were the first robots in history that were programmed to "think" the way biological brains do and meant to have free will. Elmer and Elsie were often labeled as tortoises because of how they were shaped and the manner in which they moved. They were capable of phototaxis which is the movement that occurs in response to light stimulus.

<span class="mw-page-title-main">Micro air vehicle</span> Class of very small unmanned aerial vehicle

A micro air vehicle (MAV), or micro aerial vehicle, is a class of man-portable miniature UAVs whose size enables them to be used in low-altitude, close-in support operations. Modern MAVs can be as small as 5 centimeters - compare Nano Air Vehicle. Development is driven by commercial, research, government, and military organizations; with insect-sized aircraft reportedly expected in the future. The small craft allow remote observation of hazardous environments or of areas inaccessible to ground vehicles. Hobbyists have designed MAVs for applications such as aerial robotics contests and aerial photography. MAVs can offer autonomous modes of flight.

<span class="mw-page-title-main">Teleoperation</span> Operation of a system or machine at a distance

Teleoperation indicates operation of a system or machine at a distance. It is similar in meaning to the phrase "remote control" but is usually encountered in research, academia and technology. It is most commonly associated with robotics and mobile robots but can be applied to a whole range of circumstances in which a device or machine is operated by a person from a distance.

<span class="mw-page-title-main">Unmanned ground vehicle</span> Type of vehicle

An unmanned ground vehicle (UGV) is a vehicle that operates while in contact with the ground and without an onboard human presence. UGVs can be used for many applications where it may be inconvenient, dangerous, or impossible to have a human operator present. Generally, the vehicle will have a set of sensors to observe the environment, and will either autonomously make decisions about its behavior or pass the information to a human operator at a different location who will control the vehicle through teleoperation.

<span class="mw-page-title-main">Foster-Miller TALON</span> American tracked military robot

The Foster-Miller TALON is a remotely operated vehicle, and it is a small, tracked military robot designed for missions ranging from reconnaissance to combat. It is made by the American robotics company QinetiQ-NA, a subsidiary of QinetiQ.

<span class="mw-page-title-main">Lockheed Martin Desert Hawk</span> Type of aircraft

The Lockheed Martin Desert Hawk is a miniature UAV used for base perimeter protection. It was designed by Lockheed Martin's Skunk Works for the United States Air Force Force Protection Airborne Surveillance System (FPASS) Program on a quick-reaction contract issued late in the winter of 2002, with the first system delivered in the early summer. It was designed quickly, because the program leveraged technology and design studies developed for the MicroStar MAVs. The program was run by Electronic Systems Center. In 2007, the U.S. Air Force FPASS office switched all of their UAV systems over to the RQ-11B Raven.

<span class="mw-page-title-main">TerraMax</span> Trademark for autonomous/unmanned ground vehicle technology

TerraMax is the trademark for autonomous/unmanned ground vehicle technology developed by Oshkosh Defense. Primary military uses for the technology are seen as reconnaissance missions and freight transport in high-risk areas so freeing soldiers from possible attacks, ambushes or the threat of mines and IEDs. The technology could also be used in civilian settings, such as autonomous snow clearing at airports.

<span class="mw-page-title-main">Kaman K-MAX</span> American medium-lift helicopter

The Kaman K-MAX is a helicopter with intermeshing rotors (synchropter) designed and produced by the American manufacturer Kaman Aircraft.

<span class="mw-page-title-main">Land Tamer</span> Range of remote access vehicles

The Land Tamer is a range of remote access vehicles made by the Hydratrek company.

<span class="mw-page-title-main">Legged Squad Support System</span> DARPA project for a legged robot

The Legged Squad Support System (LS3) was a DARPA project for a legged robot which could function autonomously as a packhorse for a squad of soldiers or marines. Like BigDog, its quadruped predecessor, the LS3 was ruggedized for military use, with the ability to operate in hot, cold, wet, and dirty environments. The LS3 was put into storage in late 2015.

<span class="mw-page-title-main">Ripsaw (vehicle)</span> Unmanned ground vehicle

The Ripsaw is a series of developmental unmanned ground combat vehicles designed by Howe & Howe Technologies for evaluation by the United States Army.

The Modular Advanced Armed Robotic System (MAARS) is a robot that is being developed by Qinetiq. A member of the TALON family, it will be the successor to the armed SWORDS robot. It has a different, larger chassis than the SWORDS robot, so has little physically in common with the SWORDS and TALON

<span class="mw-page-title-main">Aerial Reconfigurable Embedded System</span> Roadable aircraft

The Aerial Reconfigurable Embedded System (ARES) was a concept for an unmanned VTOL flight module that can transport various payloads. The concept started as the TX (Transformer) in 2009 for a terrain-independent transportation system centered on a ground vehicle that could be configured into a VTOL air vehicle and carry four troops. ARES' primary function was the same as TX, to use flight to avoid ground-based transportation threats like ambushes and IEDs for units that don't have helicopters for those missions. It was to be powered by twin tilting ducted fans and have its own power system, fuel, digital flight controls, and remote command-and-control interfaces. The flight module would have different detachable mission modules for specific purposes including cargo delivery, CASEVAC, and ISR. Up to 3,000 lb (1,400 kg) of payload would be carried by a module.

Adaptive collaborative control is the decision-making approach used in hybrid models consisting of finite-state machines with functional models as subcomponents to simulate behavior of systems formed through the partnerships of multiple agents for the execution of tasks and the development of work products. The term “collaborative control” originated from work developed in the late 1990s and early 2000 by Fong, Thorpe, and Baur (1999). It is important to note that according to Fong et al. in order for robots to function in collaborative control, they must be self-reliant, aware, and adaptive. In literature, the adjective “adaptive” is not always shown but is noted in the official sense as it is an important element of collaborative control. The adaptation of traditional applications of control theory in teleoperations sought initially to reduce the sovereignty of “humans as controllers/robots as tools” and had humans and robots working as peers, collaborating to perform tasks and to achieve common goals. Early implementations of adaptive collaborative control centered on vehicle teleoperation. Recent uses of adaptive collaborative control cover training, analysis, and engineering applications in teleoperations between humans and multiple robots, multiple robots collaborating among themselves, unmanned vehicle control, and fault tolerant controller design.

The Lockheed Martin Desert Hawk III (DHIII) is a miniature UAV designed by the Lockheed Martin Aeronautics in 2006 for use by modern militaries. It is a small surveillance drone, which is mainly used by the United Kingdom, but has also been used by the United States to assist in the war on terror by executing reconnaissance and recovery missions.

<span class="mw-page-title-main">National Robotics Engineering Center</span> Operating unit within the Robotics Institute of Carnegie Mellon University

The National Robotics Engineering Center (NREC) is an operating unit within the Robotics Institute (RI) of Carnegie Mellon University. NREC works closely with government and industry clients to apply robotic technologies to real-world processes and products, including unmanned vehicle and platform design, autonomy, sensing and image processing, machine learning, manipulation, and human–robot interaction.

<span class="mw-page-title-main">Counter-IED equipment</span>

Counter-IED equipment are created primarily for military and law enforcement. They are used for standoff detection of explosives and explosive precursor components and defeating the Improvised Explosive Devices (IEDs) devices themselves as part of a broader counter-terrorism, counter-insurgency, or law enforcement effort.

<span class="mw-page-title-main">Miloš (unmanned ground vehicle)</span> Unmanned robotic system

Miloš, also called Little Miloš, is an unmanned ground vehicle (UGV) developed by the Military Technical Institute, following the development of unmanned ground vehicle Milica in 2009. UGV Miloš is in serial production and first customer are Serbian Armed Forces.

<span class="mw-page-title-main">Integrated Unmanned Ground System</span> Unmanned ground vehicle

Integrated Modular Unmanned Ground System (UGS or iMUGS) is a European Union's Permanent Structured Cooperation (PESCO) project that aims to create a European standard unmanned ground system and develop scalable modular architecture for hybrid manned-unmanned systems, as well as increasing interoperability, situational awareness and speeding up decision making. The project is coordinated by Estonia, with 10 other European countries participating. It will use Milrem's existing THeMIS unmanned ground vehicle for different payloads.

References

  1. Kris Osborn (2009-03-15). "Army Robots: Will Humans Still Be in Control?". Time magazine . Archived from the original on March 16, 2009. Retrieved 2009-03-16.
  2. Gizmag SMSS
  3. Lockheed SMSS pdf - Lockheed
  4. 1 2 Robotic Mule Vendors Seek Opportunities Outside Military Archived 2013-07-05 at archive.today - Nationaldefensemagazine.org, July 2013
  5. SMSS in Afghanistan - Unmanned Systems Technology.com, May 24, 2012
  6. Lockheed Martin’s SMSS Unmanned Autonomous Vehicle Operates Via Satellite Control - Lockheed press release, February 19, 2013
  7. UGV models face off over firepower, load carrying - Armytimes.com, 12 October 2013
  8. Four companies advance to build Army’s equipment transport ground robot - Defensenews.com, 14 December 2017
  9. US Army, Lockheed Martin Test Collaborative Robotics at Ft Benning - Defense-Update.com, 18 August 2014