In mathematics, the standard conjectures about algebraic cycles are several conjectures describing the relationship of algebraic cycles and Weil cohomology theories. One of the original applications of these conjectures, envisaged by Alexander Grothendieck, was to prove that his construction of pure motives gave an abelian category that is semisimple. Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely the "Riemann hypothesis" conjecture that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see Kleiman (1968). The standard conjectures remain open problems, so that their application gives only conditional proofs of results. In quite a few cases, including that of the Weil conjectures, other methods have been found to prove such results unconditionally.
The classical formulations of the standard conjectures involve a fixed Weil cohomology theory H. All of the conjectures deal with "algebraic" cohomology classes, which means a morphism on the cohomology of a smooth projective variety
induced by an algebraic cycle with rational coefficients on the product X × X via the cycle class map, which is part of the structure of a Weil cohomology theory.
Conjecture A is equivalent to Conjecture B (see Grothendieck (1969), p. 196), and so is not listed.
One of the axioms of a Weil theory is the so-called hard Lefschetz theorem (or axiom):
Begin with a fixed smooth hyperplane section
where X is a given smooth projective variety in the ambient projective space P N and H is a hyperplane. Then for i ≤ n = dim(X), the Lefschetz operator
which is defined by intersecting cohomology classes with W, gives an isomorphism
Now, for i ≤ n define:
The conjecture states that the Lefschetz operator (Λ) is induced by an algebraic cycle.
It is conjectured that the projectors
are algebraic, i.e. induced by a cycle π i ⊂ X × X with rational coefficients. This implies that the motive of any smooth projective variety (and more generally, every pure motive) decomposes as
The motives and can always be split off as direct summands. The conjecture therefore immediately holds for curves. It was proved for surfaces by Murre (1990). Katz & Messing (1974) have used the Weil conjectures to show the conjecture for algebraic varieties defined over finite fields, in arbitrary dimension.
Šermenev (1974) proved the Künneth decomposition for abelian varieties A. Deninger & Murre (1991) refined this result by exhibiting a functorial Künneth decomposition of the Chow motive of A such that the n-multiplication on the abelian variety acts as on the i-th summand . de Cataldo & Migliorini (2002) proved the Künneth decomposition for the Hilbert scheme of points in a smooth surface.
Conjecture D states that numerical and homological equivalence agree. (It implies in particular the latter does not depend on the choice of the Weil cohomology theory). This conjecture implies the Lefschetz conjecture. If the Hodge standard conjecture holds, then the Lefschetz conjecture and Conjecture D are equivalent.
This conjecture was shown by Lieberman for varieties of dimension at most 4, and for abelian varieties. [1]
The Hodge standard conjecture is modelled on the Hodge index theorem. It states the definiteness (positive or negative, according to the dimension) of the cup product pairing on primitive algebraic cohomology classes. If it holds, then the Lefschetz conjecture implies Conjecture D. In characteristic zero the Hodge standard conjecture holds, being a consequence of Hodge theory. In positive characteristic the Hodge standard conjecture is known for surfaces (Grothendieck (1958)) and for abelian varieties of dimension 4 (Ancona (2020)).
The Hodge standard conjecture is not to be confused with the Hodge conjecture which states that for smooth projective varieties over C, every rational (p, p)-class is algebraic. The Hodge conjecture implies the Lefschetz and Künneth conjectures and conjecture D for varieties over fields of characteristic zero. The Tate conjecture implies Lefschetz, Künneth, and conjecture D for ℓ-adic cohomology over all fields.
For two algebraic varieties X and Y, Arapura (2006) has introduced a condition that Y is motivated by X. The precise condition is that the motive of Y is (in André's category of motives) expressible starting from the motive of X by means of sums, summands, and products. For example, Y is motivated if there is a surjective morphism . [2] If Y is not found in the category, it is unmotivated in that context. For smooth projective complex algebraic varieties X and Y, such that Y is motivated by X, the standard conjectures D (homological equivalence equals numerical), B (Lefschetz), the Hodge conjecture and also the generalized Hodge conjecture hold for Y if they hold for all powers of X. [3] This fact can be applied to show, for example, the Lefschetz conjecture for the Hilbert scheme of points on an algebraic surface.
Beilinson (2012) has shown that the (conjectural) existence of the so-called motivic t-structure on the triangulated category of motives implies the Lefschetz and Künneth standard conjectures B and C.
In mathematics, the Hodge conjecture is a major unsolved problem in algebraic geometry and complex geometry that relates the algebraic topology of a non-singular complex algebraic variety to its subvarieties.
In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.
Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.
Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.
In algebraic geometry, a Weil cohomology or Weil cohomology theory is a cohomology satisfying certain axioms concerning the interplay of algebraic cycles and cohomology groups. The name is in honor of André Weil. Any Weil cohomology theory factors uniquely through the category of Chow motives, but the category of Chow motives itself is not a Weil cohomology theory, since it is not an abelian category.
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety X embedded in projective space and a hyperplane section Y, the homology, cohomology, and homotopy groups of X determine those of Y. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories.
In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.
In mathematics, an algebraic cycle on an algebraic variety V is a formal linear combination of subvarieties of V. These are the part of the algebraic topology of V that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety.
In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck and developed by Pierre Berthelot (1974).
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).
In mathematics, especially algebraic geometry the decomposition theorem is a set of results concerning the cohomology of algebraic varieties.