Stassano furnace

Last updated
Stassano fornace exhibited at the Museo nazionale della scienza e della tecnologia Leonardo da Vinci Forno Stassano - Museo scienza e tecnologia Milano.jpg
Stassano fornace exhibited at the  Museo nazionale della scienza e della tecnologia Leonardo da Vinci

The Stassano furnace is an electric arc furnace for the production of steel. Invented by Ernesto Stassano in 1898, it is the first electric furnace in history for  ferrous metallurgy. [1]

Electric arc furnace

An electric arc furnace (EAF) is a furnace that heats charged material by means of an electric arc.

Steel alloy made by combining iron and other elements

Steel is an alloy of iron and carbon, and sometimes other elements. Because of its high tensile strength and low cost, it is a major component used in buildings, infrastructure, tools, ships, automobiles, machines, appliances, and weapons.

Ferrous metallurgy heavy industry that deals with the production of steel

Ferrous metallurgy is the metallurgy of iron and its alloys. It began far back in prehistory. The earliest surviving iron artifacts, from the 4th millennium BC in Egypt, were made from meteoritic iron-nickel. It is not known when or where the smelting of iron from ores began, but by the end of the 2nd millennium BC iron was being produced from iron ores from Sub-Saharan Africa to China. The use of wrought iron was known by the 1st millennium BC, and its spread marked the Iron Age. During the medieval period, means were found in Europe of producing wrought iron from cast iron using finery forges. For all these processes, charcoal was required as fuel.

Contents

History

Stassano furnace, 1920 Forno Stassano, forno elettrico, 1920 - san dl SAN IMG-00001420.jpg
Stassano furnace, 1920

Stassano had the idea of building an electrical furnace for ferrous metallurgy in 1896, while he was working in Pont-Saint-Martin, Aosta Valley, on electrical furnaces for the production of  calcium carbide. [2]

Pont-Saint-Martin, Aosta Valley Comune in Aosta Valley, Italy

Pont-Saint-Martin ; Piedmontese: Pont San Martìn) is a town and comune in the Aosta Valley region of northwest Italy.

Calcium carbide chemical compound

Calcium carbide, also known as calcium acetylide, is a chemical compound with the chemical formula of CaC2. Its main use industrially is in the production of acetylene and calcium cyanamide.

Stassano moved to the workshops of Santa Maria dei Cerchi in Rome, in 1898. Here he carried out his first experiments to obtain steel from iron ores using a small shaft furnace equipped with two electrodes capable of heating the minerals thanks to a 95 kW indirect arc. In the same year, in Darfo (BS), he carried out other tests on a similar furnace, equipped with three electrodes working at 370 kW. As a result of his experiments, Stassano modified the structure of the furnace, reducing the space above the electrodes and separating the section destined to electrodes and the one for the production of the material. He also moved from mineral-only burdens to mixed loads composed of ores, scrap and cast iron. With these adjustments, Stassano obtained high-quality steel from burdens containing 80% scrap and 20% cast iron, thus obtaining a product that could economically compete with imported steel. [2]

Iron Chemical element with atomic number 26

Iron is a chemical element with symbol Fe and atomic number 26. It is a metal in the first transition series. It is by mass the most common element on Earth, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust. Its abundance in rocky planets like Earth is due to its abundant production by fusion in high-mass stars, where it is the last element to be produced with release of energy before the violent collapse of a supernova, which scatters the iron into space.

Cast iron iron or a ferrous alloy which has been liquefied then poured into a mould to solidify

Cast iron is a group of iron-carbon alloys with a carbon content greater than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its colour when fractured: white cast iron has carbide impurities which allow cracks to pass straight through, grey cast iron has graphite flakes which deflect a passing crack and initiate countless new cracks as the material breaks, and ductile cast iron has spherical graphite "nodules" which stop the crack from further progressing.

In 1898 Stassano patented the principles and technical solutions of his furnaces in Italy, Austria, Spain, Luxembourg, Belgium, Norway, England, Sweden, Germany and USA. In 1901 in France and Hungary, and in 1902 in Switzerland. [2]

Based on the Darfo furnace, in 1901 Stassano produced a furnace with a final configuration and installed it in the Arsenal in Turin. [2]

In 1904 Stassano founded the Società Forni Termoelettrici Stassano (Stassano Society of Thermoelectric Furnaces) and opened in Turin the first foundry where steel was obtained electrically. The foundry was activated in 1905, using for its purposes two 1-ton furnaces, two 2-ton furnaces and one 5-ton furnace. [2]

Between 1906 and 1907 a number of Stassano furnaces were activated at the Bonner Faserfabrik plants in Bonn (Germany), in St. Polen (Austria), in Dunston-on-Tyne and Newcastle (UK), in Bridgeton and Redondo (USA). In 1910 Stassano furnaces will also be installed in the Ansaldo steel plants in Genoa and in the Vanzetti plants in Milan. [2]

Between 1900 and 1915 there are three active types of electric arc furnaces in the industrial field: the Stassano indirect arc furnace, the Heroult direct arc furnace with non-conductive soles, and the Girod direct arc furnace with conductive soles. The Heroult furnace is, among the three, the most suitable for large-scale production, so that its supremacy determines the decline of the Stassano furnace in the steel industry already in 1915. [1]

Structure

The indirect arc electric furnace of the Stassano type, in its final configuration, is made from a cast iron cylindrical structure lined internally with refractory bricks. The structure is divided in two separate sections: an upper section where the electrodes are placed, and a lower crucible where the burden is loaded and fused into steel. [2]

On the upper part of the furnace side wall, in correspondence with the space that houses the three graphite electrodes, are the couplings of the latter, placed at 120° from one another; each coupling is equipped with a water cooling jacket and a hydraulic system for moving the electrodes; the electrodes are placed in a horizontal position. In the central part of the side wall, in correspondence with the upper part of the crucible, there is the charge door, equipped with a metal panel coated with internal refractory material and closable with a pulley  mechanism. In the lower part of the side wall, in correspondence with the lower part of the crucible, is the taphole. At the centre of the upper base of the oven is an escape tube for gases. [2]

Functioning

The Stassano furnace produces steel by fusing scrap iron and cast iron and operating a successive  decarburization of the fused material.

The furnace is initially loaded with the material to be fused, which is introduced into the crucible from the charge door. Once the loading is completed, current is sent to the electrodes, which generate an electrical arc between them. The arc produces heat which is transmitted to the material to be melted through thermal radiation heat transfer, which is why the furnace is referred to as an indirect or radiant arc device. During the process, the charge door can be reopened to introduce into the crucible further amounts of scrap and cast iron. When all the material has been melted, it undergoes a first refining before it is poured out from the taphole. [2]  

Related Research Articles

Graphite allotrope of carbon, mineral, substance

Graphite, archaically referred to as plumbago, is a crystalline form of the element carbon with its atoms arranged in a hexagonal structure. It occurs naturally in this form and is the most stable form of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is used in pencils and lubricants. Its high conductivity makes it useful in electronic products such as electrodes, batteries, and solar panels.

Paul Héroult French inventor

Paul (Louis-Toussaint) Héroult was a French scientist. He was the inventor of the aluminium electrolysis and developed the first successful commercial electric arc furnace. He lived in Thury-Harcourt, Normandy.

Pig iron iron alloy

Pig iron is an intermediate product of the iron industry, also known as crude iron, which is first obtained from a smelting furnace in the form of oblong blocks. Pig iron has a very high carbon content, typically 3.8–4.7%, along with silica and other constituents of dross, which makes it very brittle and not useful directly as a material except for limited applications. Pig iron is made by smelting iron ore into a transportable ingot of impure high carbon-content iron in a blast furnace as an ingredient for further processing steps. The traditional shape of the molds used for pig iron ingots was a branching structure formed in sand, with many individual ingots at right angles to a central channel or runner, resembling a litter of piglets being suckled by a sow. When the metal had cooled and hardened, the smaller ingots were simply broken from the runner, hence the name pig iron. As pig iron is intended for remelting, the uneven size of the ingots and the inclusion of small amounts of sand caused only insignificant problems considering the ease of casting and handling them.

Steelmaking process for producing steel from iron ore and scrap

Steelmaking is the process for producing steel from iron ore and scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the raw iron, and alloying elements such as manganese, nickel, chromium and vanadium are added to produce different grades of steel. Limiting dissolved gases such as nitrogen and oxygen, and entrained impurities in the steel is also important to ensure the quality of the products cast from the liquid steel.

Shielded metal arc welding shielded metal arc welding

Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.

Blast furnace type of metallurgical furnace used for smelting to produce industrial metals

A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. Blast refers to the combustion air being "forced" or supplied above atmospheric pressure.

Crucible steel type of steel

Crucible steel is steel made by melting pig iron, iron, and sometimes steel, often along with sand, glass, ashes, and other fluxes, in a crucible. In ancient times steel and iron were impossible to melt using charcoal or coal fires, which could not produce temperatures high enough. However, pig iron, having a higher carbon content thus a lower melting point, could be melted, and by soaking wrought iron or steel in the liquid pig-iron for long periods of time, the carbon content of the pig iron could be reduced as it slowly diffused into the iron. Crucible steel of this type was produced in South and Central Asia during the medieval era. This generally produced a very hard steel, but also a composite steel that was inhomogeneous, consisting of a very high-carbon steel and a lower-carbon steel. This often resulted in an intricate pattern when the steel was forged, filed or polished, with possibly the most well-known examples coming from the wootz steel used in Damascus swords. Due to the use of fluxes the steel was often much higher in quality and in carbon content compared to other methods of steel production of the time.

Industrial processes Wikimedia list article

Industrial processes are procedures involving chemical, physical, electrical or mechanical steps to aid in the manufacturng of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

Steel mill plant for steelmaking

A steel mill or steelworks is an industrial plant for the manufacture of steel. It may be an integrated steel works carrying out all steps of steelmaking from smelting iron ore to rolled product, but may also describe plants where steel semi-finished casting products are made, from molten pig iron or from scrap.

Open hearth furnace

Open hearth furnaces are one of a number of kinds of furnace where excess carbon and other impurities are burnt out of pig iron to produce steel. Since steel is difficult to manufacture due to its high melting point, normal fuels and furnaces were insufficient and the open hearth furnace was developed to overcome this difficulty. Compared to Bessemer steel, which it displaced, its main advantages were that it did not expose the steel to excessive nitrogen, was easier to control, and it permitted the melting and refining of large amounts of scrap iron and steel.

Ironworks building or site where iron is smelted

An ironworks or iron works is a building or site where iron is smelted and where heavy iron and steel products are made. The term is both singular and plural, i.e. the singular of ironworks is ironworks.

Foundry factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminium and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

An induction furnace is an electrical furnace in which the heat is applied by induction heating of metal. Induction furnace capacities range from less than one kilogram to one hundred tonnes, and are used to melt iron and steel, copper, aluminium, and precious metals.

Ferrosilicon

Ferrosilicon is an alloy of iron and silicon with an average silicon content between 15 and 90 weight percent. It contains a high proportion of iron silicides.

Museo Nazionale Scienza e Tecnologia Leonardo da Vinci museum in Milan, Italy

The Museo nazionale della Scienza e della Tecnologia "Leonardo da Vinci" in Milan is the largest science and technology museum in Italy, and is dedicated to Italian painter and scientist Leonardo da Vinci. It was opened on 5 February 1953, inaugurated by prime minister of Italy, Alcide De Gasperi.

Submerged-arc furnace for phosphorus production

The Submerged-arc furnace for phosphorus production is a particular sub-type of electric arc furnace used to produce phosphorus and other products. Submerged arc furnaces are mainly used for the production of ferroalloys. The nomenclature submerged means that the furnace's electrodes are buried deep in the furnace burden. A reduction reaction takes place near the tip of the electrodes to facilitate the furnace's process.

Hunedoara steel works

The Hunedoara steel works, formally ArcelorMittal Hunedoara and formerly the Hunedoara Ironworks, Hunedoara Steel Works, Siderurgica Hunedoara and Mittal Steel, is a steel mill in the Transylvanian city of Hunedoara, Romania.

References

  1. 1 2 "Ernesto Stassano - Le voci della scienza". Museoscienza.org. Retrieved 2016-05-05.
  2. 1 2 3 4 5 6 7 8 9 "Catalogo collezioni - Forno elettrico ad arco indirettoforno Stassano - museoscienza". Museoscienza.org. Retrieved 2016-05-05.