Statistical finance

Last updated

Statistical finance [1] is the application of econophysics [2] to financial markets. Instead of the normative roots of finance, it uses a positivist framework. It includes exemplars from statistical physics with an emphasis on emergent or collective properties of financial markets. Empirically observed stylized facts are the starting point for this approach to understanding financial markets.

Contents

Stylized facts

  1. Stock markets are characterised by bursts of price volatility.
  2. Price changes are less volatile in bull markets and more volatile in bear markets.
  3. Price change correlations are stronger with higher volatility, and their auto-correlations die out quickly.
  4. Almost all real data have more extreme events than suspected.
  5. Volatility correlations decay slowly.
  6. Trading volumes have memory the same way that volatilities do.
  7. Past price changes are negatively correlated with future volatilities.

Research objectives

Statistical finance is focused on three areas:

  1. Empirical studies focused on the discovery of interesting statistical features of financial time-series data aimed at extending and consolidating the known stylized facts.
  2. The use of these discoveries to build and implement models that better price derivatives and anticipate stock price movement with an emphasis on non-Gaussian methods and models.
  3. The study of collective and emergent behaviour in simulated and real markets to uncover the mechanisms responsible for the observed stylized facts with an emphasis on agent-based models.

Financial econometrics also has a focus on the first two of these three areas. However, there is almost no overlap or interaction between the community of statistical finance researchers (who typically publish in physics journals) and the community of financial econometrics researchers (who typically publish in economics journals).

Behavioral finance and statistical finance

Behavioural finance attempts to explain price anomalies in terms of the biased behaviour of individuals, mostly concerned with the agents themselves and to a lesser degree aggregation of agent behaviour. Statistical finance is concerned with emergent properties arising from systems with many interacting agents and as such attempts to explain price anomalies in terms of the collective behaviour. Emergent properties are largely independent of the uniqueness of individual agents because they are dependent on the nature of the interactions of the agents rather than the agents themselves. This approach has drawn strongly on ideas arising from complex systems, phase transitions, criticality, self-organized criticality, non-extensivity (see Tsallis entropy), q-Gaussian models, and agents based models (see agent based model); as these are known to be able to recover some of phenomenology of financial market data, the stylized facts, in particular the long-range memory and scaling due to long-range interactions.

Criticism

Within the subject the description of financial markets blindly in terms of models of statistical physics has been argued as flawed because it has transpired these do not fully correspond to what we now know about real finance markets. First, traders create largely noise, not long range correlations among themselves, except when they all buy or all sell, such as during a popular IPO or during a crash. A market is not at an equilibrium critical point, the resulting non-equilibrium market must reflect details of traders' interactions (universality applies only to a limited very class of bifurcations, and the market does not sit at a bifurcation). Even if the notion of a thermodynamics equilibrium is considered not at the level of the agents but in terms of collections of instruments stable configurations are not observed. The market does not 'self-organize' into a stable statistical equilibrium, rather, markets are unstable. Although markets could be 'self-organizing' in the sense used by finite-time singularity models these models are difficult to falsify. Although Complex systems have never been defined in a broad sense financial markets do satisfy reasonable criterion of being considered complex adaptive systems. [3] The Tallis doctrine has been put into question as it is apparently a special case of markov dynamics so questioning the very notion of a "non-linear Fokker-Plank equation". In addition, the standard 'stylized facts' of financial markets, fat tails, scaling, and universality are not observed in real FX markets even if they are observed in equity markets.

From outside the subject the approach has been considered by many as a dangerous view of finance which has drawn criticism from some heterodox economists because of: [4]

  1. "A lack of awareness of work which has been done within economics itself."
  2. "Resistance to more rigorous and robust statistical methodology."
  3. "The belief that universal empirical regularities can be found in many areas of economic activity."
  4. "The theoretical models which are being used to explain empirical phenomena."

In response to these criticism there are claims of a general maturing of these non-traditional empirical approaches to Finance. [5] This defense of the subject does not flatter the use of physics metaphors but does defend the alternative empirical approach of "econophysics" itself.

Some of the key data claims have been questioned in terms of methods of data analysis. [6]

Some of the ideas arising from nonlinear sciences and statistical physics have been helpful in shifting our understanding financial markets, and may yet be found useful, but the particular requirements of stochastic analysis to the specific models useful in finance is apparently unique to finance as a subject. There is much lacking in this approach to finance yet it would appear that the canonical approach to finance based optimization of individual behaviour given information and preferences with assumptions to allow aggregation in equilibrium are even more problematic.

It has been suggested that what is required is a change in mindset within finance and economics that moves the field towards methods of natural science. [7] Perhaps finance needs to be thought of more as an observational science where markets are observed in the same way as the observable universe in cosmology, or the observable ecosystems in the environmental sciences. Here local principles can be uncovered by local experiments but meaningful global experiments are difficult to envision as feasible without reproducing the system being observed. The required science becomes that based largely on pluralism (see scientific pluralism the view that some phenomena observed in science require multiple explanations to account for their nature), as in most sciences that deal with complexity, rather than a singled unified mathematical framework that is to be verified by experiment.

See also

Related Research Articles

A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations, an ecosystem, a living cell, and, ultimately, for some authors, the entire universe.

Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e. investors, and the second of users of capital. It thus provides the theoretical underpinning for much of finance.

Econophysics is a non-orthodox interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics. Some of its application to the study of financial markets has also been termed statistical finance referring to its roots in statistical physics. Econophysics is closely related to social physics.

<span class="mw-page-title-main">Self-organized criticality</span> Concept in physics

Self-organized criticality (SOC) is a property of dynamical systems that have a critical point as an attractor. Their macroscopic behavior thus displays the spatial or temporal scale-invariance characteristic of the critical point of a phase transition, but without the need to tune control parameters to a precise value, because the system, effectively, tunes itself as it evolves towards criticality.

Evacuation simulation is a method to determine evacuation times for areas, buildings, or vessels. It is based on the simulation of crowd dynamics and pedestrian motion. The number of evacuation software have been increased dramatically in the last 25 years. A similar trend has been observed in term of the number of scientific papers published on this subject. One of the latest survey indicate the existence of over 70 pedestrian evacuation models. Today there are two conferences dedicated to this subject: "Pedestrian Evacuation Dynamics" and "Human Behavior in Fire".

<span class="mw-page-title-main">J. Doyne Farmer</span> American physicist and entrepreneur (b.1952)

J. Doyne Farmer is an American complex systems scientist and entrepreneur with interests in chaos theory, complexity and econophysics. He is Baillie Gifford Professor of Complex Systems Science at the Smith School of Enterprise and the Environment, Oxford University, where he is also director of the Complexity Economics programme at the Institute for New Economic Thinking at the Oxford Martin School. Additionally he is an external professor at the Santa Fe Institute. His current research is on complexity economics, focusing on systemic risk in financial markets and technological progress. During his career he has made important contributions to complex systems, chaos, artificial life, theoretical biology, time series forecasting and econophysics. He co-founded Prediction Company, one of the first companies to do fully automated quantitative trading. While a graduate student he led a group that called itself Eudaemonic Enterprises and built the first wearable digital computer, which was used to beat the game of roulette.

The Hurst exponent is used as a measure of long-term memory of time series. It relates to the autocorrelations of the time series, and the rate at which these decrease as the lag between pairs of values increases. Studies involving the Hurst exponent were originally developed in hydrology for the practical matter of determining optimum dam sizing for the Nile river's volatile rain and drought conditions that had been observed over a long period of time. The name "Hurst exponent", or "Hurst coefficient", derives from Harold Edwin Hurst (1880–1978), who was the lead researcher in these studies; the use of the standard notation H for the coefficient also relates to his name.

Complexity economics is the application of complexity science to the problems of economics. It relaxes several common assumptions in economics, including general equilibrium theory. While it does not reject the existence of an equilibrium, it sees such equilibria as "a special case of nonequilibrium", and as an emergent property resulting from complex interactions between economic agents. The complexity science approach has also been applied to computational economics.

Agent-based computational economics (ACE) is the area of computational economics that studies economic processes, including whole economies, as dynamic systems of interacting agents. As such, it falls in the paradigm of complex adaptive systems. In corresponding agent-based models, the "agents" are "computational objects modeled as interacting according to rules" over space and time, not real people. The rules are formulated to model behavior and social interactions based on incentives and information. Such rules could also be the result of optimization, realized through use of AI methods.

<span class="mw-page-title-main">Adaptive Modeler</span> Financial software application

Altreva Adaptive Modeler is a software application for creating agent-based financial market simulation models for the purpose of forecasting prices of real world market traded stocks or other securities. The technology it uses is based on the theory of agent-based computational economics (ACE), the computational study of economic processes modeled as dynamic systems of interacting heterogeneous agents.

<span class="mw-page-title-main">Didier Sornette</span> French researcher

Didier Sornette is a French researcher studying subjects including complex systems and risk management. He is Professor on the Chair of Entrepreneurial Risks at the Swiss Federal Institute of Technology Zurich and is also a professor of the Swiss Finance Institute, He was previously a Professor of Geophysics at UCLA, Los Angeles California (1996–2006) and a Research Professor at the French National Centre for Scientific Research (1981–2006).

<span class="mw-page-title-main">Capital Fund Management</span>

Capital Fund Management (CFM) is a global asset management company based in Paris with staff in New York City, London, and Sydney. CFM takes a scientific and academic approach to finance, using quantitative and systematic techniques to develop alternative investment strategies and products for institutional investors and financial advisers. CFM has over 240 employees worldwide and manages $10 billion as of July 2022.

Jean-Philippe Bouchaud is a French physicist. He is co-founder and chairman of Capital Fund Management (CFM), adjunct professor at École Normale Supérieure and co-director of the CFM-Imperial Institute of Quantitative Finance at Imperial College London. He is a member of the French Academy of Sciences, and held the Bettencourt Innovation Chair at Collège de France in 2020.

Kinetic exchange models are multi-agent dynamic models inspired by the statistical physics of energy distribution, which try to explain the robust and universal features of income/wealth distributions.

Maya Paczuski is the head and founder of the Complexity Science Group at the University of Calgary. She is a well-cited physicist whose work spans self-organized criticality, avalanche dynamics, earthquake, and complex networks. She was born in Israel in 1963, but grew up in the United States. Maya Paczuski received a B.S. and M.S. in Electrical Engineering and Computer Science from M.I.T. in 1986 and then went on to study with Mehran Kardar, earning her Ph.D in Condensed matter physics from the same institute.

Quantum finance is an interdisciplinary research field, applying theories and methods developed by quantum physicists and economists in order to solve problems in finance. It is a branch of econophysics. Today several financial applications like fraud detection, portfolio optimization, product recommendation and stock price prediction are being explored using quantum computing.

A stock correlation network is a type of financial network based on stock price correlation used for observing, analyzing and predicting the stock market dynamics.

A financial network is a concept describing any collection of financial entities and the links between them, ideally through direct transactions or the ability to mediate a transaction. A common example of a financial network link is security holdings, where a firm's ownership of stock would represent a link between the stock and the firm. In network science terms, financial networks are composed of financial nodes, where nodes represent financial institutions or participants, and of edges, where edges represent formal or informal relationships between nodes.

Physics of financial markets is a discipline that studies financial markets as physical systems. It seeks to understand the nature of financial processes and phenomena by employing the scientific method and avoiding beliefs, unverifiable assumptions and immeasurable notions, not uncommon to economic disciplines.

Tiziana Di Matteo is a Professor of Econophysics at King's College London. She studies complex systems, such as financial markets, and complex materials. She serves on the council of the Complex Systems Society.

References

  1. Bouchaud, Jean-Philippe (2002). "An introduction to statistical finance". Physica A: Statistical Mechanics and Its Applications. 313 (1–2). Elsevier BV: 238–251. Bibcode:2002PhyA..313..238B. doi:10.1016/s0378-4371(02)01039-7. ISSN   0378-4371.
  2. Plerou, Vasiliki; Gopikrishnan, Parameswaran; Nunes Amaral, Luís A.; Meyer, Martin; Stanley, H. Eugene (1999-12-01). "Scaling of the distribution of price fluctuations of individual companies". Physical Review E. 60 (6). American Physical Society (APS): 6519–6529. arXiv: cond-mat/9907161 . Bibcode:1999PhRvE..60.6519P. doi:10.1103/physreve.60.6519. ISSN   1063-651X. PMID   11970569. S2CID   17838855.
  3. Financial Market Complexity, Johnson, Jefferies and Hui, Oxford 2003
  4. Gallegati, Mauro; Keen, Steve; Lux, Thomas; Ormerod, Paul (2006). "Worrying trends in econophysics". Physica A: Statistical Mechanics and Its Applications. 370 (1). Elsevier BV: 1–6. Bibcode:2006PhyA..370....1G. doi:10.1016/j.physa.2006.04.029. ISSN   0378-4371.
  5. McCauley, Joseph L. (2006). "Response to "Worrying Trends in Econophysics"" (PDF). Physica A: Statistical Mechanics and Its Applications. 371 (2). Elsevier BV: 601–609. arXiv: physics/0606002 . Bibcode:2006PhyA..371..601M. doi:10.1016/j.physa.2006.05.043. hdl:10379/9505. ISSN   0378-4371. S2CID   29053488.
  6. Bassler, K. E.; McCauley, J. L.; Gunaratne, G. H. (2007-10-23). "Nonstationary increments, scaling distributions, and variable diffusion processes in financial markets". Proceedings of the National Academy of Sciences. 104 (44): 17287–17290. arXiv: physics/0609198 . Bibcode:2007PNAS..10417287B. doi: 10.1073/pnas.0708664104 . ISSN   0027-8424. PMC   2077248 . PMID   17956981.
  7. Bouchaud, Jean-Philippe (2008). "Economics needs a scientific revolution". Nature. 455 (7217). Springer Science and Business Media LLC: 1181. arXiv: 0810.5306 . Bibcode:2008Natur.455.1181B. doi:10.1038/4551181a. ISSN   0028-0836. S2CID   4421233.

Bibliography

See Econophysics bibliography and text books