Stellar flyby refers to the close passage of two or more stars, which remain unbound after their passage
The Sun resides in a region of relatively low stellar density in the Milky Way. Thus, close stellar flybys are relatively rare. However, once in a while a star can come relatively close. One example is Scholz's star (WISE designation WISE 0720−0846 or fully WISE J072003.20−084651.2), which is a dim binary stellar system 22 light-years (6.8 parsecs) from the Sun in the constellation Monoceros near the galactic plane. The system passed through the Solar System's Oort cloud roughly 70,000 years ago. [1] Gliese 710 or HIP 89825, an orange 0.6 M☉ star in the constellation Serpens Cauda, is projected to pass near the Sun in about 1.29 million years at a predicted minimum distance of 0.051 parsecs—0.1663 light-years (10,520 astronomical units) (about 1.60 trillion km) – about 1/25th of the current distance to Proxima Centauri. [2]
Close flybys are usually relatively rare among field stars, but are more common in star clusters [3] In these groups of stars the stellar density is much higher, so that close passages of between stars are more common. In particular in young star clusters, open clusters and globular clusters stellar flybys are thought to be common. In young clusters, such close stellar flybys might influence the frequency and size of protoplanetary discs, [2] and influence the planet formation process in these environments.
The Hyades is the nearest open cluster and one of the best-studied star clusters. Located about 153 light-years away from the Sun, it consists of a roughly spherical group of hundreds of stars sharing the same age, place of origin, chemical characteristics, and motion through space. From the perspective of observers on Earth, the Hyades Cluster appears in the constellation Taurus, where its brightest stars form a "V" shape along with the still-brighter Aldebaran. However, Aldebaran is unrelated to the Hyades, as it is located much closer to Earth and merely happens to lie along the same line of sight.
A proplyd, short for ionized protoplanetary disk, is an externally illuminated photoevaporating protoplanetary disk around a young star. Nearly 180 proplyds have been discovered in the Orion Nebula. Images of proplyds in other star-forming regions are rare, while Orion is the only region with a large known sample due to its relative proximity to Earth.
A planetary system is a set of gravitationally bound non-stellar bodies in or out of orbit around a star or star system. Generally speaking, systems with one or more planets constitute a planetary system, although such systems may also consist of bodies such as dwarf planets, asteroids, natural satellites, meteoroids, comets, planetesimals and circumstellar disks. For example, the Sun together with the planetary system revolving around it, including Earth, form the Solar System. The term exoplanetary system is sometimes used in reference to other planetary systems.
Gliese 710, or HIP 89825, is an orange 0.6 M☉ star in the constellation Serpens Cauda. It is projected to pass near the Sun in about 1.29 million years at a predicted minimum distance of 0.051 parsecs—0.1663 light-years —about 1/25th of the current distance to Proxima Centauri. Such a distance would make for a similar brightness to the brightest planets, optimally reaching an apparent visual magnitude of about −2.7. The star's proper motion will peak around one arcminute per year, a rate of apparent motion that would be noticeable over a human lifespan. This is a timeframe, based on data from Gaia DR3, well within the parameters of current models which cover the next 15 million years.
HR 7703 is a binary star system in the constellation of Sagittarius. The brighter component has an apparent visual magnitude of 5.31, which means it is visible from suburban skies at night. The two stars are separated by an angle of 7.10″, which corresponds to an estimated semimajor axis of 56.30 AU for their orbit.
Zeta Serpentis, Latinized from ζ Serpentis, is the Bayer designation for a single, yellow-white hued star in the equatorial constellation of Serpens. It is visible to the naked eye, having an apparent visual magnitude of 4.6. Based upon an annual parallax shift of 42.46 milliarcseconds as measured from the Hipparcos spacecraft, it is located 77 light years from the Sun. The star is moving closer to the Sun with a radial velocity of −50.7 km/s. It will make its closest approach in about 400,000 years when it makes perihelion passage at an estimated distance of 25.7 ly (7.88 pc).
Pi Arae, Latinized from π Arae, is the Bayer designation for a star in the southern constellation of Ara. It is faintly visible to the naked eye with an apparent visual magnitude of +5.25. Based upon an annual parallax shift of 46.30 mas as seen from Earth, it is located 70 light years from the Sun. It is most likely moving closer to the Sun with a radial velocity of −3 km/s.
Omicron Columbae is a star in the southern constellation Columba. It has an apparent visual magnitude of 4.81, which is bright enough to be faintly visible to the naked eye. The distance to this star, as determined by an annual parallax shift of 30.82 mas, is 105.8 light years. The visual magnitude is reduced by an interstellar absorption factor of 0.06 due to intervening dust.
HR 4458 is a binary star system in the equatorial constellation of Hydra. It has the Gould designation 289 G. Hydrae; HR 4458 is the Bright Star Catalogue designation. At a distance of 31.13 light years, it is the closest star system to the Solar System within this constellation. This object is visible to the naked eye as a dim, orange-hued star with an apparent visual magnitude of 5.97. It is moving closer to the Earth with a heliocentric radial velocity of −22 km/s.
HD 100546, also known as KR Muscae, is a pre-main sequence star of spectral type B8 to A0 located 353 light-years from Earth in the southern constellation of Musca. The star is surrounded by a circumstellar disk from a distance of 0.2 to 4 AU, and again from 13 AU out to a few hundred AU, with evidence for a protoplanet forming at a distance of around 47 AU.
R Coronae Australis is a variable binary system in the constellation Corona Australis. It has varied between magnitudes 10 and 14.36. A small reflection/emission nebula NGC 6729 extends from the star towards SE. It is also the brightest feature of the Coronet Cluster, therefore sometimes called R CrA Cluster.
Chi Ceti , is the Bayer designation for a double star in the equatorial constellation of Cetus. They appear to be common proper motion companions, sharing a similar motion through space. The brighter component, HD 11171, is visible to the naked eye with an apparent visual magnitude of 4.66, while the fainter companion, HD 11131, is magnitude 6.75. Both lie at roughly the same distance, with the brighter component lying at an estimated distance of 75.6 light years from the Sun based upon an annual parallax shift of 43.13 mass.
Eta Chamaeleontis, Latinized from η Chamaeleontis, is a star in the constellation Chamaeleon. It has an apparent magnitude of about 5.5, meaning that it is just barely visible to the naked eye. Based upon parallax measurements, this star is located some 325 light-years light years away from the Sun.
31 Persei is a single star in the northern constellation of Perseus. It is visible to the naked eye as a dim, blue-white hued point of light with an apparent visual magnitude of 5.05. This star is located around 172 parsecs (560 ly) away from the Sun, and it is drifting closer with a radial velocity of −1.6 km/s. It is likely a member of the Alpha Persei Cluster.
YBP 1194 is a G-type main-sequence star, class G5V, in the open cluster Messier 67, about 2,890 light-years from the Sun in the constellation Cancer. It is a solar twin, having the near exact same temperature and mass as the Sun. YBP 1194 has a slightly higher metallicity than the Sun, and may be slightly younger at an age of 3.5-4.8 billion years. In January 2014, this star was announced to have an exoplanet.
HIP 85605 is a star in the constellation Hercules with a visual apparent magnitude of 11.03. It was thought to be a M dwarf or K-type main-sequence star and possibly a companion of the brighter star HIP 85607, but they are now known to be an optical double.
Scholz's Star is a dim binary stellar system 22 light-years from the Sun in the constellation Monoceros near the galactic plane. It was discovered in 2013 by astronomer Ralf-Dieter Scholz. In 2015, Eric Mamajek and collaborators reported that the system passed through the Solar System's Oort cloud roughly 70,000 years ago, and dubbed it Scholz's Star.
HD 151932, also known as WR 78, is a Wolf-Rayet star located in the constellation Scorpius, close to the galactic plane. Its distance is around 1,300 parsecs away from the Earth. Despite being a blue-colored Wolf-Rayet star, it is extremely reddened by interstellar extinction, so its apparent magnitude is brighter for longer-wavelength passbands. HD 151932 lies about 22′ west of the open cluster NGC 6231, the center of the OB association Scorpius OB1; it is not clear whether it is a part of the association or not. With an apparent magnitude of about 6.5, it is one of the few Wolf-Rayet stars that can be seen with the naked eye.
WD 0810-353 is a white dwarf currently located 36 light-years from the Solar System. This stellar remnant may approach the Solar System 29,000 years from now at a distance of around 0.15 parsecs, 0.49 light-years or 31,000 AU from the Sun, crossing well within the proposed boundaries of the Oort cloud. Such close proximity will almost certainly make its flyby the closest in the future, until the flyby of Gliese 710 occurs around 1.14 million years after the dwarf's flyby.