Stevensite

Last updated
Stevensite
Stevensite-213178.jpg
General
Category Mineral
IMA symbol Stv [1]
Identification
ColorWhite, pale yellow, pale brown, pale pink
Mohs scale hardness2 1/2 [2]
Streak White

Stevensite is white clay mineral. [3] The mineral is a member of smectite. [2]

The mineral is named after Edwin Augustus Stevens. [2]

Stevensite can be found at the Dean Quarry. [4]

Related Research Articles

<span class="mw-page-title-main">Mohs scale</span> Qualitative scale characterizing scratch resistance

The Mohs scale of mineral hardness is a qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of minerals through the ability of harder material to scratch softer material.

<span class="mw-page-title-main">Dolomite (mineral)</span> Carbonate mineral - CaMg(CO₃)₂

Dolomite is an anhydrous carbonate mineral composed of calcium magnesium carbonate, ideally CaMg(CO3)2. The term is also used for a sedimentary carbonate rock composed mostly of the mineral dolomite (see Dolomite (rock)). An alternative name sometimes used for the dolomitic rock type is dolostone.

<span class="mw-page-title-main">Cassiterite</span> Tin oxide mineral, SnO₂

Cassiterite is a tin oxide mineral, SnO2. It is generally opaque, but it is translucent in thin crystals. Its luster and multiple crystal faces produce a desirable gem. Cassiterite was the chief tin ore throughout ancient history and remains the most important source of tin today.

<span class="mw-page-title-main">Cerussite</span> Lead carbonate mineral

Cerussite (also known as lead carbonate or white lead ore) is a mineral consisting of lead carbonate (PbCO3), and is an important ore of lead. The name is from the Latin cerussa, white lead. Cerussa nativa was mentioned by Conrad Gessner in 1565, and in 1832 F. S. Beudant applied the name céruse to the mineral, whilst the present form, cerussite, is due to W. Haidinger (1845). Miners' names in early use were lead-spar and white-lead-ore.

<span class="mw-page-title-main">Riebeckite</span> Sodium-rich member of the amphibole group of silicate minerals

Riebeckite is a sodium-rich member of the amphibole group of silicate minerals, chemical formula Na2(Fe2+3Fe3+2)Si8O22(OH)2. It forms a solid solution series with magnesioriebeckite. It crystallizes in the monoclinic system, usually as long prismatic crystals showing a diamond-shaped cross section, but also in fibrous, bladed, acicular, columnar, and radiating forms. Its Mohs hardness is 5.0–6.0, and its specific gravity is 3.0–3.4. Cleavage is perfect, two directions in the shape of a diamond; fracture is uneven, splintery. It is often translucent to nearly opaque.

<span class="mw-page-title-main">Samarskite-(Y)</span>

Samarskite is a radioactive rare earth mineral series which includes samarskite-(Y), with the chemical formula (YFe3+Fe2+U,Th,Ca)2(Nb,Ta)2O8 and samarskite-(Yb), with the chemical formula (YbFe3+)2(Nb,Ta)2O8. The formula for samarskite-(Y) is also given as (Y,Fe3+,U)(Nb,Ta)O4.

<span class="mw-page-title-main">Tantalite</span> Tantalum ore

The mineral group tantalite [(Fe, Mn)Ta2O6] is the primary source of the chemical element tantalum, a corrosion (heat and acid) resistant metal. It is chemically similar to columbite, and the two are often grouped together as a semi-singular mineral called coltan or "columbite-tantalite" in many mineral guides. However, tantalite has a much greater specific gravity than columbite (8.0+ compared to columbite's 5.2). Iron-rich tantalite is the mineral tantalite-(Fe) or ferrotantalite and manganese-rich is tantalite-(Mn) or manganotantalite.

<span class="mw-page-title-main">Krennerite</span> Gold telluride mineral

Krennerite is an orthorhombic gold telluride mineral which can contain variable amounts of silver in the structure. The formula is AuTe2, but specimen with gold substituted by up to 24% with silver have been found ([Au0.77Ag0.24]Te2). Both of the chemically similar gold-silver tellurides, calaverite and sylvanite, are in the monoclinic crystal system, whereas krennerite is orthorhombic.

<span class="mw-page-title-main">Bixbyite</span> Manganese-iron mixed oxide mineral

Bixbyite is a manganese iron oxide mineral with chemical formula: (Mn,Fe)2O3. The iron/manganese ratio is quite variable and many specimens have almost no iron. It is a metallic dark black with a Mohs hardness of 6.0 – 6.5. It is a somewhat rare mineral sought after by collectors as it typically forms euhedral isometric crystals exhibiting various cubes, octahedra, and dodecahedra.

<span class="mw-page-title-main">Cesbronite</span>

Cesbronite is a copper-tellurium oxysalt mineral with the chemical formula Cu3Te6+O4(OH)4 (IMA 17-C). It is colored green and its crystals are orthorhombic dipyramidal. Cesbronite is rated 3 on the Mohs Scale. It is named after Fabien Cesbron (born 1938), a French mineralogist.

Anandite is a rare phyllosilicate with formula (Ba,K)(Fe2+,Mg)3(Si,Al,Fe)4O10(S,OH)2. It crystallizes in the monoclinic crystal system. It is black in color with a glassy luster and a near perfect cleavage.

<span class="mw-page-title-main">Sulfate mineral</span> Class of minerals that include the sulfate ion

The sulfate minerals are a class of minerals that include the sulfate ion within their structure. The sulfate minerals occur commonly in primary evaporite depositional environments, as gangue minerals in hydrothermal veins and as secondary minerals in the oxidizing zone of sulfide mineral deposits. The chromate and manganate minerals have a similar structure and are often included with the sulfates in mineral classification systems.

<span class="mw-page-title-main">Richterite</span> Sodium amphibole mineral

Richterite is a sodium calcium magnesium silicate mineral belonging to the amphibole group. If iron replaces the magnesium within the structure of the mineral, it is called ferrorichterite; if fluorine replaces the hydroxyl, it is called fluororichterite. Richterite crystals are long and prismatic, or prismatic to fibrous aggregate, or rock-bound crystals. Colors of richterite range from brown, grayish-brown, yellow, brownish- to rose-red, or pale to dark green. Richterite occurs in thermally metamorphosed limestones in contact metamorphic zones. It also occurs as a hydrothermal product in mafic igneous rocks, and in manganese-rich ore deposits. Localities include Mont-Saint-Hilaire, Quebec, and Wilberforce and Tory Hill, Ontario, Canada; Långban and Pajsberg, Sweden; West Kimberley, Western Australia; Sanka, Myanmar; and, in the US, at Iron Hill, Colorado; Leucite Hills, Wyoming; and Libby, Montana. The mineral was named in 1865 for the German mineralogist Hieronymous Theodor Richter (1824–1898).

Faizievite is a very rare mineral with the formula K2Na(Ca6Na)Ti4Li6Si24O66F2. This triclinic mineral is chemically related to baratovite and katayamalite. Faizievite is a single-locality mineral, coming from the moraine of the Darai-Pioz glacier, Tien Shan Mountains, Tajikistan. Alkaline rocks of this site are famous for containing numerous rare minerals, often enriched in boron, caesium, lithium, titanium, rare earth elements, barium, and others.

Marklite is a hydrated copper carbonate mineral named after Gregor Markl, a German mineralogist at the University of Tübingen. Markl found the type specimen of marklite in the dumps of the Friedrich-Christian mine in the Black Forest Mountains in southwestern Germany. Markl specializes in crustal petrology and geochemistry and has studied the hydrothermal ore deposits of the Black Forest area. Jakub Plášil of the Institute of Physics at the Academy of Sciences of the Czech Republic and colleagues identified its structure.

Ewingite is a mineral discovered by Jakub Plášil of the Institute of Physics at the Academy of Sciences of the Czech Republic in the Plavno mine, Czech Republic. Travis Olds of the University of Notre Dame and colleagues described ewingite, which is the most structurally complex known mineral on Earth. Ewingite is named in honor of Rodney C. Ewing, Professor of Geological Sciences at Stanford University, USA.

Leószilárdite is a mineral discovered by Travis Olds of the University of Notre Dame and colleagues in the Markey Mine in Utah, USA. They named the mineral in honor of Leó Szilárd, Hungarian-born physicist and inventor. Leószilárdite is the first naturally occurring sodium- and magnesium-containing uranyl carbonate. It is rare and water-soluble, and was discovered on a seam of carbon-rich material deposited by an ancient stream. Groundwater reacted with the uraninite ore to create leószilárdite and other minerals.

<span class="mw-page-title-main">Parisite-(La)</span> Carbonate-fluoride mineral

Parisite-(La) is mineral discovered by Daniel Atencio of the University of São Paulo and colleagues in the Mula claim, Bahia, Brazil. Parisite-(La) is the lanthanum analog of parisite-(Ce), which has the same structure, but with cerium substituted for lanthanum. Parisite-(La) is chemically similar to synchysite-(La).

<span class="mw-page-title-main">Chalcostibite</span>

Chalcostibite is a copper antimony sulfide mineral.

<span class="mw-page-title-main">Milarite</span> Beryllium mineral

Milarite is a rare beryl. It is a member of the osumilite group. Crystals of this mineral typically come in green or yellow. The mineral gets name after Val Milar.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 "Stevensite". www.mindat.org. Retrieved 2021-09-05.
  3. "Wisconsin Geological & Natural History Survey » Stevensite". wgnhs.wisc.edu. 18 June 2021. Retrieved 2021-09-05.
  4. Kloprogge, J. Theo; Lavinsky, Rob; Young, Stretch (2017-08-02). Photo Atlas of Mineral Pseudomorphism. Elsevier. p. 79. ISBN   978-0-12-803703-4.