Stimulus-onset asynchrony (SOA) is a measure used in experimental psychology. SOA denotes the amount of time between the start of one stimulus, S1, and the start of another stimulus, S2 (Figure 1). In this respect, a stimulus may consist of, e.g., a presented image, sound or printed word. A short time interval between S1 and S2 may lead to interference in the neural processing of these two patterns. Conversely, a very long SOA may lead to a situation where the brain activity caused by S1 may have faded, such that S2 has become an isolated event. Typical research questions concern the facilitation, deterioration, or biasing effects of the sequential stimulus presentation on a required later response. In one type of study on subliminal stimulation, called "pattern masking," subliminality is achieved by masking the subliminal stimulus with a second stimulus composed of either random parts of letters or numbers, or containing different kinds of figural properties. Here, the critical parameter is the time interval (the SOA) between the onset of the subliminal stimulus and the onset of the masking stimulus. [1] In psycholinguistics the stimuli are typically a prime and a target, in which case the stimulus-onset asynchrony is measured from the beginning of the prime (S1) until the beginning of the target (S2). This time can be manipulated experimentally to determine its effects on other dependent measures such as reaction time or brain activity. [2]
For an example of the application of stimulus-onset asynchrony, see psychological refractory period.
SOA may refer to:
The mere-exposure effect is a psychological phenomenon by which people tend to develop a preference for things merely because they are familiar with them. In social psychology, this effect is sometimes called the familiarity principle. The effect has been demonstrated with many kinds of things, including words, Chinese characters, paintings, pictures of faces, geometric figures, and sounds. In studies of interpersonal attraction, the more often someone sees a person, the more pleasing and likeable they find that person.
Iconic memory is the visual sensory memory register pertaining to the visual domain and a fast-decaying store of visual information. It is a component of the visual memory system which also includes visual short-term memory (VSTM) and long-term memory (LTM). Iconic memory is described as a very brief, pre-categorical, high capacity memory store. It contributes to VSTM by providing a coherent representation of our entire visual perception for a very brief period of time. Iconic memory assists in accounting for phenomena such as change blindness and continuity of experience during saccades. Iconic memory is no longer thought of as a single entity but instead, is composed of at least two distinctive components. Classic experiments including Sperling's partial report paradigm as well as modern techniques continue to provide insight into the nature of this SM store.
The N400 is a component of time-locked EEG signals known as event-related potentials (ERP). It is a negative-going deflection that peaks around 400 milliseconds post-stimulus onset, although it can extend from 250-500 ms, and is typically maximal over centro-parietal electrode sites. The N400 is part of the normal brain response to words and other meaningful stimuli, including visual and auditory words, sign language signs, pictures, faces, environmental sounds, and smells.
Mental chronometry is the scientific study of processing speed or reaction time on cognitive tasks to infer the content, duration, and temporal sequencing of mental operations. Reaction time is measured by the elapsed time between stimulus onset and an individual’s response on elementary cognitive tasks (ETCs), which are relatively simple perceptual-motor tasks typically administered in a laboratory setting. Mental chronometry is one of the core methodological paradigms of human experimental, cognitive, and differential psychology, but is also commonly analyzed in psychophysiology, cognitive neuroscience, and behavioral neuroscience to help elucidate the biological mechanisms underlying perception, attention, and decision-making in humans and other species.
Negative priming is an implicit memory effect in which prior exposure to a stimulus unfavorably influences the response to the same stimulus. It falls under the category of priming, which refers to the change in the response towards a stimulus due to a subconscious memory effect. Negative priming describes the slow and error-prone reaction to a stimulus that is previously ignored. For example, a subject may be imagined trying to pick a red pen from a pen holder. The red pen becomes the target of attention, so the subject responds by moving their hand towards it. At this time, they mentally block out all other pens as distractors to aid in closing in on just the red pen. After repeatedly picking the red pen over the others, switching to the blue pen results in a momentary delay picking the pen out. The slow reaction due to the change of the distractor stimulus to target stimulus is called the negative priming effect.
Echoic memory is the sensory memory that registers specific to auditory information (sounds). Once an auditory stimulus is heard, it is stored in memory so that it can be processed and understood. Unlike visual memory, in which our eyes can scan the stimuli over and over, the auditory stimuli cannot be scanned over and over. Since echoic memories are heard once, they are stored for slightly longer periods of time than iconic memories. Auditory stimuli are received by the ear one at a time before they can be processed and understood. For instance, hearing the radio is very different from reading a magazine. A person can only hear the radio once at a given time, while the magazine can be read over and over again. It can be said that the echoic memory is like a "holding tank" concept, because a sound is unprocessed until the following sound is heard, and only then can it be made meaningful. This particular sensory store is capable of storing large amounts of auditory information that is only retained for a short period of time. This echoic sound resonates in the mind and is replayed for this brief amount of time shortly after being heard. Echoic memory encodes only moderately primitive aspects of the stimuli, for example pitch, which specifies localization to the non-association brain regions.
In cognitive psychology, the Eriksen flanker task is a set of response inhibition tests used to assess the ability to suppress responses that are inappropriate in a particular context. The target is flanked by non-target stimuli which correspond either to the same directional response as the target, to the opposite response, or to neither. The task is named for American psychologists Barbara. A. Eriksen & Charles W. Eriksen, who first published the task in 1974, and for the flanker stimuli that surround the target. In the tests, a directional response is assigned to a central target stimulus. Various forms of the task are used to measure information processing and selective attention.
Priming is a phenomenon whereby exposure to one stimulus influences a response to a subsequent stimulus, without conscious guidance or intention. For example, the word NURSE is recognized more quickly following the word DOCTOR than following the word BREAD. Priming can be perceptual, associative, repetitive, positive, negative, affective, semantic, or conceptual. Research, however, has yet to firmly establish the duration of priming effects, yet their onset can be almost instantaneous.
In neuroscience, the lateralized readiness potential (LRP) is an event-related brain potential, or increase in electrical activity at the surface of the brain, that is thought to reflect the preparation of motor activity on a certain side of the body; in other words, it is a spike in the electrical activity of the brain that happens when a person gets ready to move one arm, leg, or foot. It is a special form of bereitschaftspotential. LRPs are recorded using electroencephalography (EEG) and have numerous applications in cognitive neuroscience.
The oddball paradigm is an experimental design used within psychology research. Presentations of sequences of repetitive stimuli are infrequently interrupted by a deviant stimulus. The reaction of the participant to this "oddball" stimulus is recorded.
In the psychology of perception and motor control, the term response priming denotes a special form of priming. Generally, priming effects take place whenever a response to a target stimulus is influenced by a prime stimulus presented at an earlier time. The distinctive feature of response priming is that prime and target are presented in quick succession and are coupled to identical or alternative motor responses. When a speeded motor response is performed to classify the target stimulus, a prime immediately preceding the target can thus induce response conflicts when assigned to a different response as the target. These response conflicts have observable effects on motor behavior, leading to priming effects, e.g., in response times and error rates. A special property of response priming is its independence from visual awareness of the prime.
Pre-attentive processing is the subconscious accumulation of information from the environment. All available information is pre-attentively processed. Then, the brain filters and processes what is important. Information that has the highest salience or relevance to what a person is thinking about is selected for further and more complete analysis by conscious (attentive) processing. Understanding how pre-attentive processing works is useful in advertising, in education, and for prediction of cognitive ability.
The term psychological refractory period (PRP) refers to the period of time during which the response to a second stimulus is significantly slowed because a first stimulus is still being processed. This delay in response time when one is required to divide attention can exhibit a negative effect that is evident in many fields of study. The PRP can be used to investigate many areas of research that study processes which require divided attention, such as reading aloud, language, or driving and talking on the phone. PRP effects related to personality, age, and level of alcohol or caffeine intake have also been investigated.
Subliminal stimuli are any sensory stimuli below an individual's threshold for conscious perception, in contrast to supraliminal stimuli. A 2012 review of functional magnetic resonance imaging (fMRI) studies showed that subliminal stimuli activate specific regions of the brain despite participants' unawareness. Visual stimuli may be quickly flashed before an individual can process them, or flashed and then masked to interrupt processing. Audio stimuli may be played below audible volumes or masked by other stimuli.
Visual masking is a phenomenon of visual perception. It occurs when the visibility of one image, called a target, is reduced by the presence of another image, called a mask. The target might be invisible or appear to have reduced contrast or lightness. There are three different timing arrangements for masking: forward masking, backward masking, and simultaneous masking. In forward masking, the mask precedes the target. In backward masking the mask follows the target. In simultaneous masking, the mask and target are shown together. There are two different spatial arrangements for masking: pattern masking and metacontrast. Pattern masking occurs when the target and mask locations overlap. Metacontrast masking occurs when the mask does not overlap with the target location.
The Posner cueing task, also known as the Posner paradigm, is a neuropsychological test often used to assess attention. Formulated by Michael Posner, it assesses a person's ability to perform an attentional shift. It has been used and modified to assess disorders, focal brain injury, and the effects of both on spatial attention.
In psychophysics, Korte's third law of apparent motion is an observation relating the phenomenon of apparent motion to the distance and duration between two successively presented stimuli.
Anthony Marcel is a British psychologist who contributed to the early debate on the nature of unconscious perceptual processes in the 1970s and 1980s. Marcel argued in favour of an unconscious mind that "…automatically re-describe(s) sensory data into every representational form and to the highest levels of description available to the organism.” Marcel sparked controversy with his claim to have demonstrated unconscious priming. As of 2013 Marcel was working at the University of Hertfordshire and Cambridge University where his research focused on consciousness and phenomenological experience.
Binding and Retrieval in Action Control (BRAC) is a theoretical framework to explain basic psychological functions at the intersection of perception and motor control. It takes a cognitive approach by capturing how events are represented in the cognitive system. Its two core mechanisms – binding and retrieval of feature codes – explain a variety of observations in basic psychological experiments within a compact and parsimonious framework.