Stone sealer

Last updated

Stone sealing is the application of a surface treatment to products constructed of natural stone to retard staining and corrosion. [1] All bulk natural stone is riddled with interconnected capillary channels that permit penetration by liquids and gases. This is true for igneous rock types such as granite and basalt, metamorphic rocks such as marble and slate, and sedimentary rocks such as limestone, travertine, and sandstone. These porous channels act like a sponge, and capillary action draws in liquids over time, along with any dissolved salts and other solutes. Very porous stone, such as sandstone absorb liquids relatively quickly, while denser igneous stones such as granite are significantly less porous; they absorb smaller volumes, and more slowly, especially when absorbing viscous liquids.

Contents

Why seal?

Natural stone is used in kitchens, floors, walls, bathrooms, dining rooms, around swimming pools, building foyers, public areas and facades. Since ancient times, stone has been popular for building and decorative purposes. It has been valued for its strength, durability, and insulation properties. It can be cut, cleft, or sculpted to shape as required, and the variety of natural stone types, textures, and colors provide an exceptionally versatile range of building materials. The porosity and makeup of most stone does, however, leave it prone to certain types of damage if unsealed.

Staining is the most common form of damage. It is the result of oils or other liquids penetrating deeply into the capillary channels and depositing material that is effectively impossible to remove without destroying the stone.

Salt Attack occurs when salts dissolved in water are carried into the stone. The two commonest effects are efflorescence and spalling. Salts that expand on crystallization in capillary gaps can cause surface spalling. For example, various magnesium and calcium salts in sea water expand considerably on drying by taking on water of crystallization. However, even sodium chloride, which does not include water of crystallization, can exert considerable expansive forces as its crystals grow.

Efflorescence is the formation of a gritty deposit, commonly white, on the surface. Efflorescence is usually the result of mineral solutions in the capillary channels being drawn to the surface. If the water evaporates, the minerals remain as the so-called efflorescence. It also can be the result of chemical reaction; if badly prepared cement-based mortar is applied to maintain the stone in position, free calcium hydroxide may leach out. In the open air the lime reacts with carbon dioxide to form water-insoluble calcium carbonate that might take the form of powdery efflorescence or dripstone-like crusting.

Gargoyle in Bavaria damaged by acid rain - Acid rain damaged gargoyle -.jpg
Gargoyle in Bavaria damaged by acid rain

Acid Attack. Acid-soluble stone materials such as the calcite in marble, limestone and travertine, as well as the internal cement that binds the resistant grains in sandstone, react with acidic solutions on contact, or on absorbing acid-forming gases in polluted air, such as oxides of sulfur or nitrogen. Acid erodes the stone, leaving dull marks on polished surfaces. In time it may cause deep pitting, eventually totally obliterating the forms of statues, memorials and other sculptures. Even mild household acids, including cola, wine, vinegar, lemon juice and milk, can damage vulnerable types of stone. The milder the acid, the longer it takes to etch calcite-based stone; stronger acids can cause irreparable damage in seconds.

Picture Framing occurs when water or grout moves into the edges of the stone to create an unsightly darkening or "frame" affect. Such harm is usually irreversible.

Freeze-thaw Spalling results when water freezes in the surface pores. The general term is Frost weathering. The water expands on freezing, causing the stone to spall, crumble, or even to crack through.

Protecting stone

The longevity and usefulness of stone can be extended by sealing its surface effectively, so as to exclude harmful liquids and gases. The ancient Romans often used olive oil to seal their stone. Such treatment provides some protection by excluding water and other weathering agents, but it stains the stone permanently.

During the renaissance Europeans experimented with the use of topical varnishes and sealants made from ingredients such as egg white, natural resins and silica, which were clear, could be applied wet and harden to form a protective skin. Most such measures did not last long, and some proved harmful in the long run.

Modern sealers

Modern stone sealers are divided into 3 broad types:

Topical sealers
Generally made from polyurethanes, acrylics, or natural wax. [2] These sealers may be effective at stopping stains but, being exposed on the surface of the material, they tend to wear out relatively quickly, especially on high-traffic areas of flooring. This type of sealer will significantly change the look and slip resistance of the surface, especially when it is wet. These sealers are not breathable i.e. do not allow the escape of water vapour and other gases, and are not effective against salt attack, such as efflorescence and spalling.
Penetrating sealers
The most penetrating sealers use siliconates, fluoro-polymers and siloxanes, which repel liquids. These sealers penetrate the surface of the stone enough to anchor the material to the surface. They are generally longer lasting than topical sealers and often do not substantially alter the look of the stone, but still can change the slip characteristics of the surface and do wear relatively quickly. Penetrating sealers often require the use of special cleaners which both clean and top up the repellent ingredient left on the stone surface. These sealers are often breathable to a certain degree, but do not penetrate deeply enough (generally less than 1mm) to be effective against salt attack, such as efflorescence and spalling.
Impregnating sealers
Uses silanes or modified silanes. These are a type of penetrating sealer, which penetrate deeply into the material, impregnating it with molecules which bond to the capillary pores and repels water and / or oils from within the material. Some modified silane sealers impregnate deeply enough to protect against salt attack, such as efflorescence, spalling, picture framing and freeze-thaw spalling. Some silane stone sealers based on nanotechnology claim to be resistant to UV light and higher pH levels found in new masonry and pointing. [3] A good depth of penetration is also essential for protection from weathering and traffic.

See also

Related Research Articles

<span class="mw-page-title-main">Marble</span> Type of metamorphic rock

Marble is a metamorphic rock consisting of carbonate minerals that recrystallize under the influence of heat, pressure, and aqueous solutions (most commonly calcite (CaCO3) or dolomite (CaMg(CO3)2) and has a crystalline texture of varying thickness. Marble is typically not foliated (layered), although there are exceptions.

<span class="mw-page-title-main">Brine</span> Concentrated solution of salt in water

Brine is a high-concentration solution of salt in water. In diverse contexts, brine may refer to the salt solutions ranging from about 3.5% up to about 26%. Brine forms naturally due to evaporation of ground saline water but it is also generated in the mining of sodium chloride. Brine is used for food processing and cooking, for de-icing of roads and other structures, and in a number of technological processes. It is also a by-product of many industrial processes, such as desalination, so it requires wastewater treatment for proper disposal or further utilization.

<span class="mw-page-title-main">Weathering</span> Deterioration of rocks and minerals through exposure to the elements

Weathering is the deterioration of rocks, soils and minerals through contact with water, atmospheric gases, sunlight, and biological organisms. Weathering occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.

<span class="mw-page-title-main">Spall</span> Fragments broken off a larger solid body of material

Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure. Spalling and spallation both describe the process of surface failure in which spall is shed.

<span class="mw-page-title-main">Pavers (flooring)</span> Stone or tile structure which can serve as floor; pavement type with solid blocks

A paver is a paving stone, tile, brick or brick-like piece of concrete commonly used as exterior flooring. In a factory, concrete pavers are made by pouring a mixture of concrete and some type of coloring agent into a mold of some shape and allowing to set. They are generally placed on top of a foundation which is made of layers of compacted stone and sand. The pavers are placed in the desired pattern and the space between pavers is then filled with a polymeric sand. No actual adhesive or retaining method is used other than the weight of the paver itself except edging. Pavers can be used to make roads, driveways, patios, walkways and other outdoor platforms.

<span class="mw-page-title-main">Efflorescence</span> Migration of a salt to the surface of a porous material

In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water, or occasionally in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.

An artificial membrane, or synthetic membrane, is a synthetically created membrane which is usually intended for separation purposes in laboratory or in industry. Synthetic membranes have been successfully used for small and large-scale industrial processes since the middle of the twentieth century. A wide variety of synthetic membranes is known. They can be produced from organic materials such as polymers and liquids, as well as inorganic materials. Most commercially utilized synthetic membranes in industry are made of polymeric structures. They can be classified based on their surface chemistry, bulk structure, morphology, and production method. The chemical and physical properties of synthetic membranes and separated particles as well as separation driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradient. The respective membrane process is therefore known as filtration. Synthetic membranes utilized in a separation process can be of different geometry and flow configurations. They can also be categorized based on their application and separation regime. The best known synthetic membrane separation processes include water purification, reverse osmosis, dehydrogenation of natural gas, removal of cell particles by microfiltration and ultrafiltration, removal of microorganisms from dairy products, and dialysis.

<span class="mw-page-title-main">Saltillo tile</span> Mexican tile design

Saltillo tile is a type of terracotta tile that originates in Saltillo, Coahuila, Mexico. It is one of the two most famous products of the city, the other being multicolored woven sarapes typical of the region. Saltillo-type tiles are now manufactured at many places in Mexico, and high-fire "Saltillo look" tiles, many from Italy, compete with the terracotta originals.

<span class="mw-page-title-main">Kipp's apparatus</span> Laboratory device for preparing gases

Kipp's apparatus, also called a Kipp generator, is an apparatus designed for preparation of small volumes of gases. It was invented around 1844 by the Dutch pharmacist Petrus Jacobus Kipp and widely used in chemical laboratories and for demonstrations in schools into the second half of the 20th century.

<span class="mw-page-title-main">Damp (structural)</span> Presence of unwanted moisture in the structure of a building

Structural dampness is the presence of unwanted moisture in the structure of a building, either the result of intrusion from outside or condensation from within the structure. A high proportion of damp problems in buildings are caused by ambient climate dependent factors of condensation and rain penetration. Capillary penetration of fluid from the ground up through concrete or masonry is known as "rising damp" and is governed by the shape and porosity of the construction materials through which this evaporation-limited capillary penetration takes place. Structural damp, regardless of the mechanisms through which it takes place, is exacerbated by higher levels of humidity.

Basement waterproofing involves techniques and materials used to prevent water from penetrating the basement of a house or a building. Waterproofing a basement that is below ground level can require the application of sealant materials, the installation of drains and sump pumps, and more.

<span class="mw-page-title-main">Alkali soil</span> Soil type with pH > 8.5

Alkali, or Alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils.
Alkaline soils are basic, but not all basic soils are alkaline.

<span class="mw-page-title-main">Descaling agent</span> Substance used to remove limescale from surfaces

A descaling agent or chemical descaler is a liquid chemical substance used to remove limescale from metal surfaces in contact with hot water, such as in boilers, water heaters, and kettles. Limescale is either white or brown in colour due to the presence of iron compounds. Glass surfaces may also exhibit scaling stains, as can many ceramic surfaces present in bathrooms and kitchen, and descaling agents can be used safely to remove those stains without affecting the substrate since both ceramics and glass are unreactive to most acids.

<span class="mw-page-title-main">Polished concrete</span> Concrete which has been mechanically ground, honed, and polished

Polished concrete is a multi-step process where a concrete floor is mechanically ground, honed and polished with bonded abrasives in order to cut a concrete floor's surface. It is then refined with each cut in order to achieve a specified level of appearance.

<span class="mw-page-title-main">Byne's disease</span> Mollusk disease

Byne's disease, more accurately known as Bynesian decay, is a peculiar and permanently damaging condition resulting from an ongoing chemical reaction which often attacks mollusk shells and other calcareous specimens that are in storage or on display for long periods of time. It is a form of efflorescence of salts formed by the reaction of acidic vapors with the basic calcareous surface. The efflorescence can sometimes superficially resemble a growth of mold. Although first described in the early 19th century, Bynesian decay was not well understood until almost a hundred years later. The condition is named after the man who is best known for describing it in the late 19th century, even though he was not the first person to describe it in print. In addition, Byne mistakenly assumed that the condition was caused by bacteria, and thus the condition came to be referred to as a "disease".

Concrete sealers are applied to concrete to protect it from surface damage, corrosion, and staining. They either block the pores in the concrete to reduce absorption of water and salts or form an impermeable layer which prevents such materials from passing.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damages are caused by the formation of expansive products produced by various chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms. Other damaging processes can also involve calcium leaching by water infiltration and different physical phenomena initiating cracks formation and propagation. All these detrimental processes and damaging agents adversely affects the concrete mechanical strength and its durability.

<span class="mw-page-title-main">Conservation and restoration of ceramic objects</span> Preservation of heritage collections

Conservation and restoration of ceramic objects is a process dedicated to the preservation and protection of objects of historical and personal value made from ceramic. Typically, this activity of conservation-restoration is undertaken by a conservator-restorer, especially when dealing with an object of cultural heritage. Ceramics are created from a production of coatings of inorganic, nonmetallic materials using heating and cooling to create a glaze. These coatings are often permanent and sustainable for utilitarian and decorative purposes. The cleaning, handling, storage, and in general treatment of ceramics is consistent with that of glass because they are made of similar oxygen-rich components, such as silicates. In conservation ceramics are broken down into three groups: unfired clay, earthenware or terracotta, and stoneware and porcelain.

<span class="mw-page-title-main">Conservation and restoration of shipwreck artifacts</span>

The conservation and restoration of shipwreck artifacts is the process of caring for cultural heritage that has been part of a shipwreck. Oftentimes these cultural artifacts have been underwater for a great length of time. Without conservation, most artifacts would perish and important historical data would be lost. In archaeological terms, it is usually the responsibility of an archaeologist and conservator to ensure that material recovered from a shipwreck is properly cared for. The conservation phase is often time-consuming and expensive, which is one of the most important considerations when planning and implementing any action involving the recovery of artifacts from a shipwreck.

Organosilicon water repellent:

References