This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
Stone sealing is the application of a surface treatment to products constructed of natural stone to retard staining and corrosion. [1] All bulk natural stone is riddled with interconnected capillary channels that permit penetration by liquids and gases. This is true for igneous rock types such as granite and basalt, metamorphic rocks such as marble and slate, and sedimentary rocks such as limestone, travertine, and sandstone. These porous channels act like a sponge, and capillary action draws in liquids over time, along with any dissolved salts and other solutes. Very porous stone, such as sandstone absorb liquids relatively quickly, while denser igneous stones such as granite are significantly less porous; they absorb smaller volumes, and more slowly, especially when absorbing viscous liquids.
Natural stone is used in kitchens, floors, walls, bathrooms, dining rooms, around swimming pools, building foyers, public areas and facades. Since ancient times, stone has been popular for building and decorative purposes. It has been valued for its strength, durability, and insulation properties. It can be cut, cleft, or sculpted to shape as required, and the variety of natural stone types, textures, and colors provide an exceptionally versatile range of building materials. The porosity and makeup of most stone does, however, leave it prone to certain types of damage if unsealed.
The longevity and usefulness of stone can be extended by sealing its surface effectively, so as to exclude harmful liquids and gases. The ancient Romans often used olive oil to seal their stone. Such treatment provides some protection by excluding water and other weathering agents, but it stains the stone permanently.
During the renaissance Europeans experimented with the use of topical varnishes and sealants made from ingredients such as egg white, natural resins and silica, which were clear, could be applied wet and harden to form a protective skin. Most such measures did not last long, and some proved harmful in the long run.
Modern stone sealers are divided into 3 broad types: topical sealers, penetrating sealers, and impregnating sealers.
Topical sealers are generally made from polyurethanes, acrylics, or natural wax. [2] These sealers may be effective at stopping stains but, being exposed on the surface of the material, they tend to wear out relatively quickly, especially on high-traffic areas of flooring. This type of sealer will significantly change the look and slip resistance of the surface, especially when it is wet. These sealers are not breathable i.e. do not allow the escape of water vapour and other gases, and are not effective against salt attack, such as efflorescence and spalling.
The most penetrating sealers use siliconates, fluoro-polymers and siloxanes, which repel liquids. These sealers penetrate the surface of the stone enough to anchor the material to the surface. They are generally longer lasting than topical sealers and often do not substantially alter the look of the stone, but still can change the slip characteristics of the surface and do wear relatively quickly. Penetrating sealers often require the use of special cleaners which both clean and top up the repellent ingredient left on the stone surface. These sealers are often breathable to a certain degree, but do not penetrate deeply enough (generally less than 1mm) to be effective against salt attack, such as efflorescence and spalling.
Uses silanes or modified silanes. These are a type of penetrating sealer, which penetrate deeply into the material, impregnating it with molecules which bond to the capillary pores and repels water and / or oils from within the material. Some modified silane sealers impregnate deeply enough to protect against salt attack, such as efflorescence, spalling, picture framing and freeze-thaw spalling. Some silane stone sealers based on nanotechnology claim to be resistant to UV light and higher pH levels found in new masonry and pointing. [3] A good depth of penetration is also essential for protection from weathering and traffic.
Weathering is the deterioration of rocks, soils and minerals through contact with water, atmospheric gases, sunlight, and biological organisms. It occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.
Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure. Spalling and spallation both describe the process of surface failure in which spall is shed.
A paver is a paving stone, tile, brick or brick-like piece of concrete commonly used as exterior flooring. They are generally placed on top of a foundation which is made of layers of compacted stone and sand. The pavers are placed in the desired pattern and the space between pavers that is created with the integrated spacer bar is then filled with concrete sand or a polymeric sand. No actual adhesive or retaining method is used other than the weight of the paver itself except edging. Pavers can be used to make roads, driveways, patios, walkways and other outdoor platforms.
In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water or occasionally, in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.
An artificial membrane, or synthetic membrane, is a synthetically created membrane which is usually intended for separation purposes in laboratory or in industry. Synthetic membranes have been successfully used for small and large-scale industrial processes since the middle of the twentieth century. A wide variety of synthetic membranes is known. They can be produced from organic materials such as polymers and liquids, as well as inorganic materials. Most commercially utilized synthetic membranes in industry are made of polymeric structures. They can be classified based on their surface chemistry, bulk structure, morphology, and production method. The chemical and physical properties of synthetic membranes and separated particles as well as separation driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradient. The respective membrane process is therefore known as filtration. Synthetic membranes utilized in a separation process can be of different geometry and flow configurations. They can also be categorized based on their application and separation regime. The best known synthetic membrane separation processes include water purification, reverse osmosis, dehydrogenation of natural gas, removal of cell particles by microfiltration and ultrafiltration, removal of microorganisms from dairy products, and dialysis.
Saltillo tile is a type of terracotta tile that originates in Saltillo, Coahuila, Mexico. It is one of the two most famous products of the city, the other being multicolored woven sarapes typical of the region. Saltillo-type tiles are now manufactured at many places in Mexico, and high-fire "Saltillo look" tiles, many from Italy, compete with the terracotta originals.
Porous silicon is a form of the chemical element silicon that has introduced nanopores in its microstructure, rendering a large surface to volume ratio in the order of 500 m2/cm3.
Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms or a non-living substance (inorganic). Fouling is usually distinguished from other surface-growth phenomena in that it occurs on a surface of a component, system, or plant performing a defined and useful function and that the fouling process impedes or interferes with this function.
Kipp's apparatus, also called a Kipp generator, is an apparatus designed for preparation of small volumes of gases. It was invented around 1844 by the Dutch pharmacist Petrus Jacobus Kipp and widely used in chemical laboratories and for demonstrations in schools into the second half of the 20th century.
Structural dampness is the presence of unwanted moisture in the structure of a building, either the result of intrusion from outside or condensation from within the structure. A high proportion of damp problems in buildings are caused by ambient climate dependent factors of condensation and rain penetration. Capillary penetration of fluid from the ground up through concrete or masonry is known as "rising damp" and is governed by the shape and porosity of the construction materials through which this evaporation-limited capillary penetration takes place. Structural damp, regardless of the mechanisms through which it takes place, is exacerbated by higher levels of humidity.
Basement waterproofing involves techniques and materials used to prevent water from penetrating the basement of a house or a building. Waterproofing a basement that is below ground level can require the application of sealant materials, the installation of drains and sump pumps, and more.
Alkali, or alkaline, soils are clay soils with high pH, a poor soil structure and a low infiltration capacity. Often they have a hard calcareous layer at 0.5 to 1 metre depth. Alkali soils owe their unfavorable physico-chemical properties mainly to the dominating presence of sodium carbonate, which causes the soil to swell and difficult to clarify/settle. They derive their name from the alkali metal group of elements, to which sodium belongs, and which can induce basicity. Sometimes these soils are also referred to as alkaline sodic soils. Alkaline soils are basic, but not all basic soils are alkaline.
The alkali–silica reaction (ASR), also commonly known as concrete cancer, is a deleterious internal swelling reaction that occurs over time in concrete between the highly alkaline cement paste and the reactive amorphous silica found in many common aggregates, given sufficient moisture.
A descaling agent or chemical descaler is a liquid chemical substance used to remove limescale from metal surfaces in contact with hot water, such as in boilers, water heaters, and kettles. Limescale is either white or brown in colour due to the presence of iron compounds. Glass surfaces may also exhibit scaling stains, as can many ceramic surfaces present in bathrooms and kitchen, and descaling agents can be used safely to remove those stains without affecting the substrate since both ceramics and glass are unreactive to most acids.
Byne's disease, more accurately known as Bynesian decay, is a peculiar and permanently damaging condition resulting from an ongoing chemical reaction which often attacks mollusk shells and other calcareous specimens that are in storage or on display for long periods of time. It is a form of efflorescence of salts formed by the reaction of acidic vapors with the basic calcareous surface. The efflorescence can sometimes superficially resemble a growth of mold. Although first described in the early 19th century, Bynesian decay was not well understood until almost a hundred years later. The condition is named after the man who is best known for describing it in the late 19th century, even though he was not the first person to describe it in print. In addition, Byne mistakenly assumed that the condition was caused by bacteria, and thus the condition came to be referred to as a "disease".
Concrete sealers are applied to concrete to protect it from surface damage, corrosion, and staining. They either block the pores in the concrete to reduce absorption of water and salts or form an impermeable layer which prevents such materials from passing.
Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damage is caused by the formation of expansive products produced by chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms Other damaging processes can also involve calcium leaching by water infiltration, physical phenomena initiating cracks formation and propagation, fire or radiant heat, aggregate expansion, sea water effects, leaching, and erosion by fast-flowing water.
Conservation and restoration of ceramic objects is a process dedicated to the preservation and protection of objects of historical and personal value made from ceramic. Typically, this activity of conservation-restoration is undertaken by a conservator-restorer, especially when dealing with an object of cultural heritage. Ceramics are created from a production of coatings of inorganic, nonmetallic materials using heating and cooling to create a glaze. These coatings are often permanent and sustainable for utilitarian and decorative purposes. The cleaning, handling, storage, and in general treatment of ceramics is consistent with that of glass because they are made of similar oxygen-rich components, such as silicates. In conservation ceramics are broken down into three groups: unfired clay, earthenware or terracotta, and stoneware and porcelain.
The conservation and restoration of shipwreck artifacts is the process of caring for cultural heritage that has been part of a shipwreck. Oftentimes these cultural artifacts have been underwater for a great length of time. Without conservation, most artifacts would perish and important historical data would be lost. In archaeological terms, it is usually the responsibility of an archaeologist and conservator to ensure that material recovered from a shipwreck is properly cared for. The conservation phase is often time-consuming and expensive, which is one of the most important considerations when planning and implementing any action involving the recovery of artifacts from a shipwreck.
Organosilicon water repellent: