Strip-till

Last updated

Strip-till is a conservation system that uses a minimum tillage. It combines the soil drying and warming benefits of conventional tillage with the soil-protecting advantages of no-till by disturbing only the portion of the soil that is to contain the seed row. [1] This type of tillage is performed with special equipment [2] and can require the farmer to make multiple trips, [1] depending on the strip-till implement used, and field conditions. Each row that has been strip-tilled is usually about eight to ten inches wide. [1]

Contents

A strip-till demonstration Strip-till 2011 09 07 1709.jpg
A strip-till demonstration
A field planted using strip-till. Notice the crop residue of prior crop between the growing crop rows. Cotton Production in the North Carolina Coastal Plain.jpg
A field planted using strip-till. Notice the crop residue of prior crop between the growing crop rows.

Differences in the equipment used

No-till planters have a disk opener and/or Coulter (agriculture) that is located in front of the planting unit. [3] This coulter is designed to cut through crop residue and into the hard crust of the soil. [3] After the coulter has broken through the residue and crust, the disk opener of the planting unit slices the soil and the seed is dropped into the furrow that has been created and then a press wheel closes the furrow. [3]

With strip-tillage systems more precision is needed. At the same time the field is strip-tilled, the fertilizer or chemical may be applied. If the meter of the chemical or fertilizer applicator is off slightly, an accurate rate may not be applied. This could result in increased expenses or reduction of the efficacy of the fertilizer or chemical program.

The SoilWarrior machine is used for strip-tillage. Instead of using a shank/knife, the machine uses a cog to till the soil into strips. Strip-till demonstration through SoilWarrior.jpg
The SoilWarrior machine is used for strip-tillage. Instead of using a shank/knife, the machine uses a cog to till the soil into strips.

Effects on the soils properties

Strip tillage has some similarities with no-till systems because the surface is protected with residue. However, strip-till also has a similar effect on soil properties as conventional tillage systems because the farmer still breaks the soil's crust which allows aerobic conditions to speed the decay of organic matter. A two-year study found that strip-till did not affect the amount of soil organic carbon or its extractable phosphorus. [5]

When oxygen is introduced into the soil via tillage, the decomposition of organic matter is accelerated. Carbon, nitrogen, and phosphorus were all near the surface in the no-till system and providing poorer root access to nutrients than on reduced till, and conventional till systems in an Australian study. [6]

Impacts on productivity

In one study, yields were higher in the strip-tilled area than in the area where no-till was practiced. In a low phosphorus site, yield was 43.5 bushels/acre (2,925.5 kg/hectare) in strip-till compared to 41.5 bu/a (2,791 kg/ha) in a no-till system. [7] Yield is comparable to that of intensive tillage systems — without the cost. [8]

Benefits of Strip till

Strip till warms the soil, [9] it allows an aerobic condition, and it allows for a better seedbed than no-till. Strip-till allows the soil's nutrients to be better adapted to the plant's needs, while still giving residue cover to the soil between the rows. [9] The system will still allow for some soil water contact that could cause erosion, however, the amount of erosion on a strip-tilled field would be light compared to the amount of erosion on an intensively tilled field. Furthermore, when liquid fertilizer is being applied, it can be directly applied in these rows where the seed is being planted, [10] reducing the amount of fertilizer needed while improving proximity of the fertilizer to the roots. Compared to intensive tillage, strip tillage saves considerable time and money. [11] Strip tillage can reduce the amount of trips through a field down to two or possibly one trip when using a strip till implement combined with other machinery such as a planter, fertilizer spreader, and chemical sprayer. This can save the farmer a considerable amount of time and fuel, while reducing soil compaction due to few passes in a field. With the use of GPS-guided tractors, this precision farming can increase overall yields. [12] Strip-till conserves more soil moisture compared to intensive tillage systems. However, compared to no-till, strip-till may in some cases reduce soil moisture. [13]

Challenges of both Strip-till and No-till systems

In reduced tillage strategies, weed suppression can be difficult. In place of cultivation, a farmer can suppress weeds by managing a cover crop, mowing, crimping, or herbicide application. [14] The purchase of mowing and crimping implements may represent an unjustifiable expenditure. Additionally, finding an appropriate cover crop mix for adequate weed suppression may be difficult. Also, without mowing or crimping implements it may not be possible to achieve a kill on the cover crop. If mowing, crimping, and suppression with a cover crop mixture fail, herbicides can be applied. However, this may represent an increase in total farm expenses due to herbicides being used in place of cultivation for weed suppression.

There are some disadvantages specific to strip-till systems. Some farmers may not be able to strip-till if there is an early freeze. Though strip tillage can be successful without a global position system (GPS) based guidance, it can be beneficial. [10] Lastly, strip-till systems requires a high-horsepower tractor; however, the energy requirement is less than with conventional tillage systems. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Tillage</span> Preparation of soil by mechanical agitation

Tillage is the agricultural preparation of soil by mechanical agitation of various types, such as digging, stirring, and overturning. Examples of human-powered tilling methods using hand tools include shoveling, picking, mattock work, hoeing, and raking. Examples of draft-animal-powered or mechanized work include ploughing, rototilling, rolling with cultipackers or other rollers, harrowing, and cultivating with cultivator shanks (teeth).

<span class="mw-page-title-main">Crop rotation</span> Agricultural practice of changing crops

Crop rotation is the practice of growing a series of different types of crops in the same area across a sequence of growing seasons. This practice reduces the reliance of crops on one set of nutrients, pest and weed pressure, along with the probability of developing resistant pests and weeds.

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

<span class="mw-page-title-main">Conservation agriculture</span> Farming system to preserve and regenerate land capacity

Conservation agriculture (CA) can be defined by a statement given by the Food and Agriculture Organization of the United Nations as "Conservation Agriculture (CA) is a farming system that can prevent losses of arable land while regenerating degraded lands.It promotes minimum soil disturbance, maintenance of a permanent soil cover, and diversification of plant species. It enhances biodiversity and natural biological processes above and below the ground surface, which contribute to increased water and nutrient use efficiency and to improved and sustained crop production."

<span class="mw-page-title-main">Green manure</span> Organic material left on an agricultural field to be used as a mulch or soil amendment

In agriculture, a green manure is a crop specifically cultivated to be incorporated into the soil while still green. Typically, the green manure's biomass is incorporated with a plow or disk, as is often done with (brown) manure. The primary goal is to add organic matter to the soil for its benefits. Green manuring is often used with legume crops to add nitrogen to the soil for following crops, especially in organic farming, but is also used in conventional farming.

<span class="mw-page-title-main">Cover crop</span> Crop planted to manage erosion and soil quality

In agriculture, cover crops are plants that are planted to cover the soil rather than for the purpose of being harvested. Cover crops manage soil erosion, soil fertility, soil quality, water, weeds, pests, diseases, biodiversity and wildlife in an agroecosystem—an ecological system managed and shaped by humans. Cover crops can increase microbial activity in the soil, which has a positive effect on nitrogen availability, nitrogen uptake in target crops, and crop yields. Cover crops may be an off-season crop planted after harvesting the cash crop. Cover crops are nurse crops in that they increase the survival of the main crop being harvested, and are often grown over the winter. In the United States, cover cropping may cost as much as $35 per acre.

<span class="mw-page-title-main">Dryland farming</span> Non-irrigated farming in areas with little rainfall during the growing season.

Dryland farming and dry farming encompass specific agricultural techniques for the non-irrigated cultivation of crops. Dryland farming is associated with drylands, areas characterized by a cool wet season followed by a warm dry season. They are also associated with arid conditions, areas prone to drought and those having scarce water resources.

<span class="mw-page-title-main">No-till farming</span> Agricultural method which does not disturb soil through tillage.

No-till farming is an agricultural technique for growing crops or pasture without disturbing the soil through tillage. No-till farming decreases the amount of soil erosion tillage causes in certain soils, especially in sandy and dry soils on sloping terrain. Other possible benefits include an increase in the amount of water that infiltrates into the soil, soil retention of organic matter, and nutrient cycling. These methods may increase the amount and variety of life in and on the soil. While conventional no-tillage systems use herbicides to control weeds, organic systems use a combination of strategies, such as planting cover crops as mulch to suppress weeds.

<span class="mw-page-title-main">Nutrient management</span> Management of nutrients in agriculture

Nutrient management is the science and practice directed to link soil, crop, weather, and hydrologic factors with cultural, irrigation, and soil and water conservation practices to achieve optimal nutrient use efficiency, crop yields, crop quality, and economic returns, while reducing off-site transport of nutrients (fertilizer) that may impact the environment. It involves matching a specific field soil, climate, and crop management conditions to rate, source, timing, and place of nutrient application.

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Contour plowing</span> Farming practice

Contour bunding or contour farming or Contour ploughing is the farming practice of plowing and/or planting across a slope following its elevation contour lines. These contour lines create a water break which reduces the formation of rills and gullies during times of heavy precipitation, allowing more time for the water to settle into the soil. In contour plowing, the ruts made by the plow run perpendicular rather than parallel to the slopes, generally furrows that curve around the land and are level. This method is also known for preventing tillage erosion. Tillage erosion is the soil movement and erosion by tilling a given plot of land. A similar practice is contour bunding where stones are placed around the contours of slopes. Contour ploughing has been proved to reduce fertilizer loss, power and time consumption, and wear on machines, as well as to increase crop yields and reduces soil erosion.

<span class="mw-page-title-main">Soil conservation</span> Preservation of soil nutrients

Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination.

<span class="mw-page-title-main">Crop residue</span> The stalks , leaves , husks, roots, etc. left after crop is harvested and processed

Crop residues are waste materials generated by agriculture. The two types are:

<span class="mw-page-title-main">Organic fertilizer</span> Fertilizer developed from natural processes

Organic fertilizers are fertilizers that are naturally produced. Fertilizers are materials that can be added to soil or plants, in order to provide nutrients and sustain growth. Typical organic fertilizers include all animal waste including meat processing waste, manure, slurry, and guano; plus plant based fertilizers such as compost; and biosolids. Inorganic "organic fertilizers" include minerals and ash. The organic-mess refers to the Principles of Organic Agriculture, which determines whether a fertilizer can be used for commercial organic agriculture, not whether the fertilizer consists of organic compounds.

<span class="mw-page-title-main">Disc harrow</span> Farming equipment

A disc harrow is a harrow whose cutting edges are a row of concave metal discs, which may be scalloped or set at an oblique angle. It is an agricultural implement that is used to till the soil where crops are to be planted. It is also used to chop up unwanted weeds or crop residue.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

The term cropping system refers to the crops, crop sequences and management techniques used on a particular agricultural field over a period of years. It includes all spatial and temporal aspects of managing an agricultural system. Historically, cropping systems have been designed to maximise yield, but modern agriculture is increasingly concerned with promoting environmental sustainability in cropping systems.

Soil management is the application of operations, practices, and treatments to protect soil and enhance its performance. It includes soil conservation, soil amendment, and optimal soil health. In agriculture, some amount of soil management is needed both in nonorganic and organic types to prevent agricultural land from becoming poorly productive over decades. Organic farming in particular emphasizes optimal soil management, because it uses soil health as the exclusive or nearly exclusive source of its fertilization and pest control.

<span class="mw-page-title-main">Vertical tillage</span>

Emerging in North America in the 1970s and 1980s, vertical tillage (VT) is a system of principles and guidelines similar to conservation agriculture (CA) in that it aims to improve soil health, increase water infiltration and decrease soil erosion and compaction. With varying degrees of soil movement, it aims to not invert the soil and keep residue on the surface where it protects the soil. It usually includes small forward-facing discs that limit soil inversion and slices the residue for faster decomposition and to get a seeder or planter into the heavy residue-laden fields. Many times it also includes a deep ripping tool for breaking up hard pans and compaction created from traditional tillage implements and heavy equipment like large tractors and combine harvesters.

<span class="mw-page-title-main">Soil compaction (agriculture)</span> Decrease in porosity of soil due to agriculture

Soil compaction, also known as soil structure degradation, is the increase of bulk density or decrease in porosity of soil due to externally or internally applied loads. Compaction can adversely affect nearly all physical, chemical and biological properties and functions of soil. Together with soil erosion, it is regarded as the "costliest and most serious environmental problem caused by conventional agriculture."

References

  1. 1 2 3 Brown, Eric. "Conservation Tillage Field Day at ARDEC". Colorado State University Extension. Retrieved 9 November 2013.
  2. "CONSERVATION PRACTICE DEFINITIONS AND THEIR CORRESPONDING POTENTIAL TO ADVERSELY IMPACT CULTURAL RESOURCES" (PDF). Natural Resources Conservation Service. U.S. Department of Agriculture. p. 11. Retrieved 9 November 2013.
  3. 1 2 3 "No-Till Cropping Systems in Oklahoma" (PDF). Oklahoma Cooperative Extension Service. Retrieved 9 November 2013.
  4. "Environmental Tillage Systems | SoilWarrior & Tilling Equipment". www.soilwarrior.com. Retrieved 2022-06-03.
  5. Kingrey, W. L.; C. W. Wood; J. C. Williams (July 1996). "Tillage and amendment effects on soil carbon and nitrogen mineralization and phosphorus release". Soil and Tillage Research. 37 (4): 239–250, page 7, paragraph 3.1 of the non–archive. doi:10.1016/0167-1987(96)01009-4. Archived from the original (PDF) on 2 February 2013. Retrieved 9 November 2013.
  6. Thomas, G.A; R.C. Dalal; J. Standley (June 2007). "No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics". Soil and Tillage Research. 94 (2): 295–304. doi:10.1016/j.still.2006.08.005. Alt URL
  7. Randall, G.W.; Vetsch, J.A.; Murrel, T.S. (2001). "Soybean Response to Residual Phosphorus for Various Placements and Tillage Practices" (PDF). Better Crops with Plant Food. Vol. 85, no. 4. p. 12.
  8. "Best Management Practices for Conservation/Reduced Tillage" (PDF). Texas Cooperative Extension, The Texas A&M University System.
  9. 1 2 "Strip-till Considerations in Oklahoma" (PDF). pods.dasnr.okstate.edu. Oklahoma Cooperative Extension Service. Retrieved 8 July 2013.
  10. 1 2 "Strip-till Considerations in Oklahoma" (PDF). pods.dasnr.okstate.edu. Oklahoma Cooperative Extension Service. p. 2. Retrieved 8 July 2013.
  11. Paul J. Jasa. "Conservation Tillage Systems". agecon.okstate.edu. University of Nebraska. p. Last page, table 2 and 3. Retrieved 8 July 2013.
  12. "Strip-till Considerations in Oklahoma" (PDF). pods.dasnr.okstate.edu. Oklahoma Cooperative Extension Service. p. 3. Retrieved 8 July 2013.
  13. "Strip-till Considerations in Oklahoma" (PDF). pods.dasnr.okstate.edu. Oklahoma Cooperative Extension Service. pp. 1–2. Retrieved 8 July 2013.
  14. "Indiana Job Sheet (340)" (docx) (ver. 1.3 ed.). Section with the heading "Operation and Maintenance" and "Termination": U.S. Department of Agriculture. October 2011. Retrieved 9 November 2013.
  15. "Strip-Tillage Option for Continuous Corn" (PDF). ISU.
  16. "Strip Till for Field Crop Production" (PDF). North Dakota State University.

Further reading