Subject-oriented business process management

Last updated

Subject-oriented business process management (S-BPM) is a communication based view on actors (the subjects), which compose a business process orchestration or choreography. [1] The modeling paradigm uses five symbols to model any process and allows direct transformation into executable form.

Contents

Each business process consists of two or more subjects which exchange messages. Each subject has an internal behavior (capsulation), which is defined as a control flow between different states, which are receive and send message and do something. For practical usage and for syntactical sugaring there are more elements available, but not necessary.

In 2011 and 2012 S-BPM has been included in Gartner's Hype Cycle.

Foundations

Process calculi

The S-BPM methodology in its essence is based on the CCS-Calculus of Robin Milner. [2] The main objective of CCS was to provide a mathematical framework to describe communicating systems in a formal way. Milner states that every interesting concurrent system is built from independent agents which communicate in a synchronized way. So the objects whose behaviors are modeled are called agents. An agent can be seen as a term for a locus of activity, a process, or a computational unit. The agent's behavior is defined by the action it can perform and represented using algebraic expressions. The notion of agent corresponds in principle with the notion of subject in S-BPM.

The basic capabilities of an agent (or subject) are

The idea of using the CCS-Calculus to model business processes was firstly proposed in 1994 in the context of subject-oriented programming. [3] Further on, the CCS-Calculus was enhanced to support graphical modeling of business processes. Any S-BPM process can be formulated in CCS-algebra. [4]

Later Milner et al. [5] proposed the π-Calculus as process algebra, in general an enhancement of the CCS-Calculus with the so-called link-mobility. π-Calculus was strongly proposed by Smith and Fingar [6] as foundation for business process management and led to some discussions about future directions for research and development. [7] [8] The search for new methodologies is motivated by the demand to better support human collaboration and communication in business processes (e.g. ad hoc processes, empowerment, human interaction workflows), which seems to be not well supported by methodologies based on e.g. Petri-nets. [9]

Abstract State Machines

S-BPM can also be formulated as Abstract state machine. A high-level subject-oriented interpreter model for the semantics of the S-BPM constructs has been published by Egon Börger. [10] This definition is the starting point for the development of an Open S-BPM Workflow Engine (see Research & Education).

Today there is a tool — cloud OS Corezoid.com. Which operates on the basis of the theory of finite automata. Its main elements are the abstract state machines, which describe the status of objects in the system. Each of these new states generate new essential processes and vice versa.

Formal language

The S-BPM methodology can be linked conceptually to the field of formal language theory as any process can be described in natural language which can be mapped during the design process on formal language as a first step of formalization.

In many natural languages, subject, predicate and object are the basic building blocks of a sentence. The subject of a sentence is the person, place, thing, or idea that is carrying out the action denoted by the predicate. A predicate has at its center a simple predicate, which is always the verb or verbs linked to the subject. The direct object is the person or thing that receives the action of the verb. It normally follows the verb. The indirect object is the person or thing to whom or to which the action was directed or for whom or for which the action was performed. The indirect object is in a way the recipient of the direct object. [11]

In the requirements engineering process people typically describe their requirements, expectations or how they do work, typically, in full sentences (if not, sentences could always be reduced or enhanced to have such a normal form). That means, any statement can be expresses as a sentence with subject, object, and predicate. In S-BPM notation this can be mapped as follows:

Subjects execute actions on objects. Nevertheless, further research seems to be needed on this topic, but it helps to explain the concept and idea behind S-BPM and it is a well explored didactical method in teaching. A comprehensive description of the S-BPM notation can be found in [12]

Subject vs. Agent

To be more precise, the relation of agent and subject is not a simple one to one match. Here, the term subject denotes a process-related functionality and agent denotes a real thing or instance (i.e. a concrete realisation of a subject). This is important, because subjects have to be matched with organisational structures (i.e. the resources of an organisation, such as people or machines). This differentiation is therefore important in the context of concrete implementations of the S-BPM methodology in an organisation - with or without the support of information technology. On the other hand, the term agent has many meanings in different domains, e.g. in economics, linguistics, social sciences or computer science. Sometimes the term actor is synonymously used. Care must be taken, not to mix up different meanings.

Example

A simple S-BPM model of a business process (quiz): internal behaviour of a subject. S-BPM internal behaviour.png
A simple S-BPM model of a business process (quiz): internal behaviour of a subject.

The basic concepts can be explained with the help of a simple example, the process of doing a quiz. This includes all elements of S-BPM: two subjects (person who asks, person who answers), three messages/objects (question, answer to question, and feedback, if answer is correct or not). This example is very basic, but has been developed for didactical purposes and can be enhanced to more complex behaviors (e.g. there is no answer that would leave the asker in an indefinite state and must be considered in modeling).

A simple S-BPM model of a business process (quiz): subject view. S-BPM model of quiz process.png
A simple S-BPM model of a business process (quiz): subject view.

Research & Education

The nonprofit organization Institute of Innovative Processmanagement (I2PM) serves as community platform to bundle research and development activities in the field of S-BPM, e.g. the Open S-BPM initiative (http://www.i2pm.net/interest-groups/open-s-bpm). The I2PM supports and stimulates the improvement of existing and the development of new tertiary curricula in the domain of business process management. Since 2009 I2PM organizes the yearly scientific conference S-BPM ONE. S-BPM has been applied and tested in a number of fields, [13] including the production industry. [14]

Related Research Articles

<span class="mw-page-title-main">Workflow</span> Pattern of activity often with a result

A workflow consists of an orchestrated and repeatable pattern of activity, enabled by the systematic organization of resources into processes that transform materials, provide services, or process information. It can be depicted as a sequence of operations, the work of a person or group, the work of an organization of staff, or one or more simple or complex mechanisms.

A business process, business method or business function is a collection of related, structured activities or tasks performed by people or equipment in which a specific sequence produces a service or product for a particular customer or customers. Business processes occur at all organizational levels and may or may not be visible to the customers. A business process may often be visualized (modeled) as a flowchart of a sequence of activities with interleaving decision points or as a process matrix of a sequence of activities with relevance rules based on data in the process. The benefits of using business processes include improved customer satisfaction and improved agility for reacting to rapid market change. Process-oriented organizations break down the barriers of structural departments and try to avoid functional silos.

The calculus of communicating systems (CCS) is a process calculus introduced by Robin Milner around 1980 and the title of a book describing the calculus. Its actions model indivisible communications between exactly two participants. The formal language includes primitives for describing parallel composition, choice between actions and scope restriction. CCS is useful for evaluating the qualitative correctness of properties of a system such as deadlock or livelock.

In computer science, the process calculi are a diverse family of related approaches for formally modelling concurrent systems. Process calculi provide a tool for the high-level description of interactions, communications, and synchronizations between a collection of independent agents or processes. They also provide algebraic laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about equivalences between processes. Leading examples of process calculi include CSP, CCS, ACP, and LOTOS. More recent additions to the family include the π-calculus, the ambient calculus, PEPA, the fusion calculus and the join-calculus.

<span class="mw-page-title-main">Concurrency (computer science)</span> Ability to execute a task in a non-serial manner

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.

<span class="mw-page-title-main">Business process modeling</span> Activity of representing processes of an enterprise

Business process modeling (BPM) in business process management and systems engineering is the activity of representing processes of an enterprise, so that the current business processes may be analyzed, improved, and automated. BPM is typically performed by business analysts, who provide expertise in the modeling discipline; by subject matter experts, who have specialized knowledge of the processes being modeled; or more commonly by a team comprising both. Alternatively, the process model can be derived directly from events' logs using process mining tools.

The actor model in computer science is a mathematical model of concurrent computation that treats an actor as the basic building block of concurrent computation. In response to a message it receives, an actor can: make local decisions, create more actors, send more messages, and determine how to respond to the next message received. Actors may modify their own private state, but can only affect each other indirectly through messaging.

<span class="mw-page-title-main">Process modeling</span> Definition and description of a process or system

The term process model is used in various contexts. For example, in business process modeling the enterprise process model is often referred to as the business process model.

The actor model and process calculi share an interesting history and co-evolution.

Business Process Modeling Language (BPML) is an XML-based language for business process modeling. It was maintained by the Business Process Management Initiative (BPMI) until June 2005 when BPMI and Object Management Group announced the merger of their respective business process management activities to form the Business Modeling and Integration Domain Task Force. It is deprecated since 2008. BPML was useful to OMG in order to enrich UML with process notation.

Process mining is a family of techniques relating the fields of data science and process management to support the analysis of operational processes based on event logs. The goal of process mining is to turn event data into insights and actions. Process mining is an integral part of data science, fueled by the availability of event data and the desire to improve processes. Process mining techniques use event data to show what people, machines, and organizations are really doing. Process mining provides novel insights that can be used to identify the execution paths taken by operational processes and address their performance and compliance problems.

A process-driven application is a software application that is driven by an underlying process or workflow engine where the process can be exposed and reused. In effect all applications are process-driven and the logic of any application can be extrapolated into a flowchart to represent the logical process of execution. Process-driven applications are a growing trend in enterprise solutions involving humans, systems or both.

Process architecture is the structural design of general process systems. It applies to fields such as computers, business processes, and any other process system of varying degrees of complexity.

Business process management (BPM) is the discipline in which people use various methods to discover, model, analyze, measure, improve, optimize, and automate business processes. Any combination of methods used to manage a company's business processes is BPM. Processes can be structured and repeatable or unstructured and variable. Though not required, enabling technologies are often used with BPM.

In philosophy, a process ontology refers to a universal model of the structure of the world as an ordered wholeness. Such ontologies are fundamental ontologies, in contrast to the so-called applied ontologies. Fundamental ontologies do not claim to be accessible to any empirical proof in itself but to be a structural design pattern, out of which empirical phenomena can be explained and put together consistently. Throughout Western history, the dominating fundamental ontology is the so-called substance theory. However, fundamental process ontologies are becoming more important in recent times, because the progress in the discovery of the foundations of physics spurred the development of a basic concept able to integrate such boundary notions as "energy," "object", and those of the physical dimensions of space and time.

The following is provided as an overview of and topical guide to databases:

Collaborative workflow is the convergence of social software with service management (workflow) software. As the definition implies, collaborative workflow is derived from both workflow software and social software such as chat, instant messaging, and document collaboration.

The goal of content-oriented workflow models is to articulate workflow progression by the presence of content units . Most content-oriented workflow approaches provide a life-cycle model for content units, such that workflow progression can be qualified by conditions on the state of the units. Most approaches are research and work in progress and the content models and life-cycle models are more or less formalized.

Imixs Workflow is an Open-Source-Project, providing technologies for building Business Process Management solutions. The project focus on human based workflows used to execute and control workflows in organisations and enterprises. In difference to task-oriented workflow engines, which focus on automated program flow control (tasks), Imixs Workflow is a representative of an event-based workflow engine. Here, the engine controls the status of a process instance within a defined state-diagram. By entering an event, the state of a process instance can be abandoned or changed. In human-centric workflow engines, events usually occur by an interaction of the actor with the system, for example by approving or rejecting a business transaction. They can also be triggered by scheduled events. An example of this is an escalation of an unfinished task.

Graph-based access control (GBAC) is a declarative way to define access rights, task assignments, recipients and content in information systems. Access rights are granted to objects like files or documents, but also business objects such as an account. GBAC can also be used for the assignment of agents to tasks in workflow environments. Organizations are modeled as a specific kind of semantic graph comprising the organizational units, the roles and functions as well as the human and automatic agents. The main difference with other approaches such as role-based access control or attribute-based access control is that in GBAC access rights are defined using an organizational query language instead of total enumeration.

References

  1. Fleischmann, Albert; Stary, Christian (2011). "Whom to talk to? A stakeholder perspective on business process development". Universal Access in the Information Society. 11 (2): 1–28. doi: 10.1007/s10209-011-0236-x .
  2. Milner, Robin (1980). A Calculus of Communicating Systems. Springer, LNCS 92. ISBN   978-3540102359.
  3. Fleischmann, Albert (1994). Distributed Systems. Springer. ISBN   978-3540573821.
  4. Aitenbichler, Erwin; Borgert, Stephan; Mühlhäuser, Max (2011). "Distributed Execution of S-BPM Business Processes". Subject-Oriented Business Process Management. pp. 19–35. CiteSeerX   10.1.1.410.7231 . doi:10.1007/978-3-642-23135-3_2. ISBN   978-3-642-23134-6.{{cite book}}: |journal= ignored (help)
  5. Milner, Robin; et al. (1992). "A Calculus of Mobile Processes, Parts I and II" (PDF). Information and Computation. 100 (1): 1–77. doi:10.1016/0890-5401(92)90008-4. hdl: 20.500.11820/cdd6d766-14a5-4c3e-8956-a9792bb2c6d3 .
  6. Smith, H.; Fingar, P. (2004). "Workflow is just a Pi process". BPTrends.com: 1–36.
  7. van der Aalst, Wil (2004). "Why workflow is NOT just a Pi-process". BPTrends.com: 1–2.
  8. Singer, Robert; Teller, Matthias (2012). "Process Algebra and the Subject-Oriented Business Process Management Approach". S-BPM ONE - Education and Industrial Developments. pp. 135–150. doi:10.1007/978-3-642-29294-1_10. ISBN   978-3-642-29293-4.{{cite book}}: |journal= ignored (help)
  9. Börger, Egon (2011). "Approaches to modeling business processes: a critical analysis of BPMN, workflow patterns and YAWL". Software and Systems Modeling. 11 (3): 1–14. doi:10.1007/s10270-011-0214-z. S2CID   16576785.
  10. Fleischmann, Albert (2011). Subjektorientiertes Prozessmanagement. München: Hanser. ISBN   9783446427075.
  11. Fleischmann, Albert (2010). What is S-BPM?. CCIS. Vol. 85. pp. 85–106. doi:10.1007/978-3-642-15915-2. ISBN   978-3-642-15914-5.
  12. Fleischmann, Albert (2012). Subject Oriented Business Process Management. Heidelberg, New York: Springer. ISBN   978-3-642-32392-8.
  13. Fleischmann, Albert; Schmidt, Werner; Stary, Christian (2015). S-BPM in the Wild: Practical Value Creation. Cham: Springer. ISBN   978-3-319-17541-6.
  14. Neubauer, Matthias; Stary, Christian (2017). S-BPM in the Production Industry: A Stakeholder Approach. Cham: Springer. ISBN   978-3-319-48465-5.