Subjective logic is a type of probabilistic logic that explicitly takes epistemic uncertainty and source trust into account. In general, subjective logic is suitable for modeling and analysing situations involving uncertainty and relatively unreliable sources. [1] [2] [3] For example, it can be used for modeling and analysing trust networks and Bayesian networks.
Arguments in subjective logic are subjective opinions about state variables which can take values from a domain (aka state space), where a state value can be thought of as a proposition which can be true or false. A binomial opinion applies to a binary state variable, and can be represented as a Beta PDF (Probability Density Function). A multinomial opinion applies to a state variable of multiple possible values, and can be represented as a Dirichlet PDF (Probability Density Function). Through the correspondence between opinions and Beta/Dirichlet distributions, subjective logic provides an algebra for these functions. Opinions are also related to the belief representation in Dempster–Shafer belief theory.
A fundamental aspect of the human condition is that nobody can ever determine with absolute certainty whether a proposition about the world is true or false. In addition, whenever the truth of a proposition is expressed, it is always done by an individual, and it can never be considered to represent a general and objective belief. These philosophical ideas are directly reflected in the mathematical formalism of subjective logic.
Subjective opinions express subjective beliefs about the truth of state values/propositions with degrees of epistemic uncertainty, and can explicitly indicate the source of belief whenever required. An opinion is usually denoted as where is the source of the opinion, and is the state variable to which the opinion applies. The variable can take values from a domain (also called state space) e.g. denoted as . The values of a domain are assumed to be exhaustive and mutually disjoint, and sources are assumed to have a common semantic interpretation of a domain. The source and variable are attributes of an opinion. Indication of the source can be omitted whenever irrelevant.
Let be a state value in a binary domain. A binomial opinion about the truth of state value is the ordered quadruple where:
: belief mass | is the belief that is true. |
: disbelief mass | is the belief that is false. |
: uncertainty mass | is the amount of uncommitted belief, also interpreted as epistemic uncertainty. |
: base rate | is the prior probability in the absence of belief or disbelief. |
These components satisfy and . The characteristics of various opinion classes are listed below.
An opinion | where | is an absolute opinion which is equivalent to Boolean TRUE, |
where | is an absolute opinion which is equivalent to Boolean FALSE, | |
where | is a dogmatic opinion which is equivalent to a traditional probability, | |
where | is an uncertain opinion which expresses degrees of epistemic uncertainty, and | |
where | is a vacuous opinion which expresses total epistemic uncertainty or total vacuity of belief. |
The projected probability of a binomial opinion is defined as .
Binomial opinions can be represented on an equilateral triangle as shown below. A point inside the triangle represents a triple. The b,d,u-axes run from one edge to the opposite vertex indicated by the Belief, Disbelief or Uncertainty label. For example, a strong positive opinion is represented by a point towards the bottom right Belief vertex. The base rate, also called the prior probability, is shown as a red pointer along the base line, and the projected probability, , is formed by projecting the opinion onto the base, parallel to the base rate projector line. Opinions about three values/propositions X, Y and Z are visualized on the triangle to the left, and their equivalent Beta PDFs (Probability Density Functions) are visualized on the plots to the right. The numerical values and verbal qualitative descriptions of each opinion are also shown.
The Beta PDF is normally denoted as where and are its two strength parameters. The Beta PDF of a binomial opinion is the function where is the non-informative prior weight, also called a unit of evidence, [4] normally set to .
Let be a state variable which can take state values . A multinomial opinion over is the composite tuple , where is a belief mass distribution over the possible state values of , is the uncertainty mass, and is the prior (base rate) probability distribution over the possible state values of . These parameters satisfy and as well as .
Trinomial opinions can be simply visualised as points inside a tetrahedron, but opinions with dimensions larger than trinomial do not lend themselves to simple visualisation.
Dirichlet PDFs are normally denoted as where is a probability distribution over the state values of , and are the strength parameters. The Dirichlet PDF of a multinomial opinion is the function where the strength parameters are given by , where is the non-informative prior weight, also called a unit of evidence, [4] normally set to the number of classes.
Most operators in the table below are generalisations of binary logic and probability operators. For example addition is simply a generalisation of addition of probabilities. Some operators are only meaningful for combining binomial opinions, and some also apply to multinomial opinion. [5] Most operators are binary, but complement is unary, and abduction is ternary. See the referenced publications for mathematical details of each operator.
Subjective logic operator | Operator notation | Propositional/binary logic operator |
---|---|---|
Addition [6] | Union | |
Subtraction [6] | Difference | |
Multiplication [7] | Conjunction / AND | |
Division [7] | Unconjunction / UN-AND | |
Comultiplication [7] | Disjunction / OR | |
Codivision [7] | Undisjunction / UN-OR | |
Complement [2] [3] | NOT | |
Deduction [1] | Modus ponens | |
Subjective Bayes' theorem [1] [8] | Contraposition | |
Abduction [1] | Modus tollens | |
Transitivity / discounting [1] | n.a. | |
Cumulative fusion [1] | n.a. | |
Constraint fusion [1] | n.a. |
Transitive source combination can be denoted in a compact or expanded form. For example, the transitive trust path from analyst/source via source to the variable can be denoted as in compact form, or as in expanded form. Here, expresses that has some trust/distrust in source , whereas expresses that has an opinion about the state of variable which is given as an advice to . The expanded form is the most general, and corresponds directly to the way subjective logic expressions are formed with operators.
In case the argument opinions are equivalent to Boolean TRUE or FALSE, the result of any subjective logic operator is always equal to that of the corresponding propositional/binary logic operator. Similarly, when the argument opinions are equivalent to traditional probabilities, the result of any subjective logic operator is always equal to that of the corresponding probability operator (when it exists).
In case the argument opinions contain degrees of uncertainty, the operators involving multiplication and division (including deduction, abduction and Bayes' theorem) will produce derived opinions that always have correct projected probability but possibly with approximate variance when seen as Beta/Dirichlet PDFs. [1] All other operators produce opinions where the projected probabilities and the variance are always analytically correct.
Different logic formulas that traditionally are equivalent in propositional logic do not necessarily have equal opinions. For example in general although the distributivity of conjunction over disjunction, expressed as , holds in binary propositional logic. This is no surprise as the corresponding probability operators are also non-distributive. However, multiplication is distributive over addition, as expressed by . De Morgan's laws are also satisfied as e.g. expressed by .
Subjective logic allows very efficient computation of mathematically complex models. This is possible by approximation of the analytically correct functions. While it is relatively simple to analytically multiply two Beta PDFs in the form of a joint Beta PDF, anything more complex than that quickly becomes intractable. When combining two Beta PDFs with some operator/connective, the analytical result is not always a Beta PDF and can involve hypergeometric series. In such cases, subjective logic always approximates the result as an opinion that is equivalent to a Beta PDF.
Subjective logic is applicable when the situation to be analysed is characterised by considerable epistemic uncertainty due to incomplete knowledge. In this way, subjective logic becomes a probabilistic logic for epistemic-uncertain probabilities. The advantage is that uncertainty is preserved throughout the analysis and is made explicit in the results so that it is possible to distinguish between certain and uncertain conclusions.
The modelling of trust networks and Bayesian networks are typical applications of subjective logic.
Subjective trust networks can be modelled with a combination of the transitivity and fusion operators. Let express the referral trust edge from to , and let express the belief edge from to . A subjective trust network can for example be expressed as as illustrated in the figure below.
The indices 1, 2 and 3 indicate the chronological order in which the trust edges and advice are formed. Thus, given the set of trust edges with index 1, the origin trustor receives advice from and , and is thereby able to derive belief in variable . By expressing each trust edge and belief edge as an opinion, it is possible for to derive belief in expressed as .
Trust networks can express the reliability of information sources, and can be used to determine subjective opinions about variables that the sources provide information about.
Evidence-based subjective logic (EBSL) [4] describes an alternative trust-network computation, where the transitivity of opinions (discounting) is handled by applying weights to the evidence underlying the opinions.
In the Bayesian network below, and are parent variables and is the child variable. The analyst must learn the set of joint conditional opinions in order to apply the deduction operator and derive the marginal opinion on the variable . The conditional opinions express a conditional relationship between the parent variables and the child variable.
The deduced opinion is computed as . The joint evidence opinion can be computed as the product of independent evidence opinions on and , or as the joint product of partially dependent evidence opinions.
The combination of a subjective trust network and a subjective Bayesian network is a subjective network. The subjective trust network can be used to obtain from various sources the opinions to be used as input opinions to the subjective Bayesian network, as illustrated in the figure below.
Traditional Bayesian network typically do not take into account the reliability of the sources. In subjective networks, the trust in sources is explicitly taken into account.
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace, is an integral transform that converts a function of a real variable to a function of a complex variable .
In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."
In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.
A random variable is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as its mathematical definition is not actually random nor a variable, but rather it is a function from possible outcomes in a sample space to a measurable space, often to the real numbers.
In probability theory and statistics, Bayes' theorem, named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event. For example, if the risk of developing health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age, rather than assuming that the individual is typical of the population as a whole.
In probability theory, there exist several different notions of convergence of sequences of random variables. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.
Abductive reasoning is a form of logical inference that seeks the simplest and most likely conclusion from a set of observations. It was formulated and advanced by American philosopher Charles Sanders Peirce beginning in the latter half of the 19th century.
The theory of belief functions, also referred to as evidence theory or Dempster–Shafer theory (DST), is a general framework for reasoning with uncertainty, with understood connections to other frameworks such as probability, possibility and imprecise probability theories. First introduced by Arthur P. Dempster in the context of statistical inference, the theory was later developed by Glenn Shafer into a general framework for modeling epistemic uncertainty—a mathematical theory of evidence. The theory allows one to combine evidence from different sources and arrive at a degree of belief that takes into account all the available evidence.
In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.
Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is an alternative to probability theory. It uses measures of possibility and necessity between 0 and 1, ranging from impossible to possible and unnecessary to necessary, respectively. Professor Lotfi Zadeh first introduced possibility theory in 1978 as an extension of his theory of fuzzy sets and fuzzy logic. Didier Dubois and Henri Prade further contributed to its development. Earlier, in the 1950s, economist G. L. S. Shackle proposed the min/max algebra to describe degrees of potential surprise.
Probability theory and statistics have some commonly used conventions, in addition to standard mathematical notation and mathematical symbols.
In mathematics, probabilistic metric spaces are a generalization of metric spaces where the distance no longer takes values in the non-negative real numbers R ≥ 0, but in distribution functions.
In thermodynamics, the fundamental thermodynamic relation are four fundamental equations which demonstrate how four important thermodynamic quantities depend on variables that can be controlled and measured experimentally. Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G or H (enthalpy). The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way.
In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
In probability theory and statistics, partial correlation measures the degree of association between two random variables, with the effect of a set of controlling random variables removed. When determining the numerical relationship between two variables of interest, using their correlation coefficient will give misleading results if there is another confounding variable that is numerically related to both variables of interest. This misleading information can be avoided by controlling for the confounding variable, which is done by computing the partial correlation coefficient. This is precisely the motivation for including other right-side variables in a multiple regression; but while multiple regression gives unbiased results for the effect size, it does not give a numerical value of a measure of the strength of the relationship between the two variables of interest.
In machine learning, the kernel embedding of distributions comprises a class of nonparametric methods in which a probability distribution is represented as an element of a reproducing kernel Hilbert space (RKHS). A generalization of the individual data-point feature mapping done in classical kernel methods, the embedding of distributions into infinite-dimensional feature spaces can preserve all of the statistical features of arbitrary distributions, while allowing one to compare and manipulate distributions using Hilbert space operations such as inner products, distances, projections, linear transformations, and spectral analysis. This learning framework is very general and can be applied to distributions over any space on which a sensible kernel function may be defined. For example, various kernels have been proposed for learning from data which are: vectors in , discrete classes/categories, strings, graphs/networks, images, time series, manifolds, dynamical systems, and other structured objects. The theory behind kernel embeddings of distributions has been primarily developed by Alex Smola, Le Song , Arthur Gretton, and Bernhard Schölkopf. A review of recent works on kernel embedding of distributions can be found in.
In mathematics, primitive recursive set functions or primitive recursive ordinal functions are analogs of primitive recursive functions, defined for sets or ordinals rather than natural numbers. They were introduced by Jensen & Karp (1971).
In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.