The Sum and Product Puzzle, also known as the Impossible Puzzle because it seems to lack sufficient information for a solution, is a logic puzzle. It was first published in 1969 by Hans Freudenthal, [1] [2] and the name Impossible Puzzle was coined by Martin Gardner. [3] The puzzle is solvable, though not easily. There exist many similar puzzles.
X and Y are two whole numbers greater than 1, and Y > X. Their sum is not greater than 100. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X + Y and P knows the product X × Y. Both S and P know all the information in this paragraph.
In the following conversation, both participants are always telling the truth:
What are X and Y?
The problem is rather easily solved once the concepts and perspectives are made clear. There are three parties involved, S, P, and O. S knows the sum X+Y, P knows the product X·Y, and the observer O knows nothing more than the original problem statement. All three parties keep the same information but interpret it differently. Then it becomes a game of information.
Let us call the split of a number A into two terms A=B+C a 2-split. There is no need for any advanced knowledge like Goldbach's conjecture or the fact that for the product B·C of such a 2-split to be unique (i.e. there are no other two numbers that also when multiplied yield the same result). But with Goldbach's conjecture, along with the fact that P would immediately know X and Y if their product were a semiprime, it can be deduced that the sum x+y cannot be even, since every even number can be written as the sum of two prime numbers. The product of those two numbers would then be a semiprime.
The following steps give the solution:
The solution has X and Y as 4 and 13, with P initially knowing the product is 52 and S knowing the sum is 17.
Initially P does not know the solution, since
and S knows that P does not know the solution since all the possible sums to 17 within the constraints produce similarly ambiguous products. However once P knows that S believes there are multiple possible solutions given the product, P can rule out 2 x 26, as in that case the sum is 28. If S had been told 28, she couldn't state with certainty that P didn't know the values, as a possible pair would be 5 and 23, and if P had been told the total of 5 x 23, then those two numbers are the only possible solution. So P now knows the numbers are 4 and 13 and tells S that he knows the numbers. From this, S now knows that of the possible pairs based on the sum (viz. 2+15, 3+14, 4+13, 5+12, 6+11, 7+10, 8+9) only one has a product that would allow P to deduce the answer, that being 4 + 13. The reader can then deduce the only possible solution based on the fact that S was able to determine it. Note that for instance, if S had been told 97 (48 + 49) and P was told 2352 (48 * 49), P would be able to deduce the only possible solution, but S would not, as 44 & 53 would still be a logically possible alternative.
This section needs additional citations for verification .(August 2018) |
The problem can be generalized. [2] The bound X + Y ≤ 100 is chosen rather deliberately. If the limit of X + Y is altered, the number of solutions may change. For X + Y < 62, there is no solution. This might seem counter-intuitive at first since the solution X = 4, Y = 13 fits within the boundary. But by the exclusion of products with factors that sum to numbers between these boundaries, there are no longer multiple ways of factoring all non-solutions, leading to the information yielding no solution at all to the problem. For example, if X = 2, Y = 62, X + Y = 64, X·Y=124 is not considered, then there remains only one product of 124, viz. 4·31, yielding a sum of 35. Then 35 is eliminated when S declares that P cannot know the factors of the product, which it would not have been if the sum of 64 was allowed.
On the other hand, when the limit is X + Y ≤ 1685 or higher, there appears a second solution X = 4, Y = 61. Thus, from then on, the problem is not solvable in the sense that there is no longer a unique solution. Similarly, if X + Y ≤ 1970 or higher a third solution appears (X = 16, Y = 73). All of these three solutions contain one prime number. The first solution with no prime number is the fourth which appears at X + Y ≤ 2522 or higher with values X = 16 = 2·2·2·2 and Y = 111 = 3·37.
If the condition Y > X > 1 is changed to Y > X > 2, there is a unique solution for thresholds X + Y ≤ t for 124 < t < 5045, after which there are multiple solutions. At 124 and below, there are no solutions. It is not surprising that the threshold for a solution has gone up. Intuitively, the problem space got "sparser" when the prime number 2 is no longer available as the factor X, creating fewer possible products X·Y from a given sum A. When there are many solutions, that is, for higher t, some solutions coincide with those for the original problem with Y > X > 1, for example X = 16, Y = 163.
If the condition X + Y ≤ t for some threshold t is exchanged for X·Y ≤ u instead, the problem changes appearance. It becomes easier to solve with less calculations required. A reasonable value for u could be u = t·t/4 for the corresponding t based on the largest product of two factors whose sum are t being (t/2)·(t/2). Now the problem has a unique solution in the ranges 47 < t < 60, 71 < t < 80, 107 < t < 128, and 131 < t < 144 and no solution below that threshold. The results for the alternative formulation do not coincide with those of the original formulation, neither in number of solutions, nor in content.
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.
In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . The problem is known to be NP-hard. Moreover, some restricted variants of it are NP-complete too, for example:
A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal numeral system.
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.
Dynamic programming is both a mathematical optimization method and an algorithmic paradigm. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics.
In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.
An Egyptian fraction is a finite sum of distinct unit fractions, such as
Verbal arithmetic, also known as alphametics, cryptarithmetic, cryptarithm or word addition, is a type of mathematical game consisting of a mathematical equation among unknown numbers, whose digits are represented by letters of the alphabet. The goal is to identify the value of each letter. The name can be extended to puzzles that use non-alphabetic symbols instead of letters.
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in time, and matching lower bounds are known in some specialized models of computation.
Kakuro or Kakkuro or Kakoro is a kind of logic puzzle that is often referred to as a mathematical transliteration of the crossword. Kakuro puzzles are regular features in many math-and-logic puzzle publications across the world. In 1966, Canadian Jacob E. Funk, an employee of Dell Magazines, came up with the original English name Cross Sums and other names such as Cross Addition have also been used, but the Japanese name Kakuro, abbreviation of Japanese kasan kurosu, seems to have gained general acceptance and the puzzles appear to be titled this way now in most publications. The popularity of Kakuro in Japan is immense, second only to Sudoku among Nikoli's famed logic-puzzle offerings.
In number theory, Znám's problem asks which sets of integers have the property that each integer in the set is a proper divisor of the product of the other integers in the set, plus 1. Znám's problem is named after the Slovak mathematician Štefan Znám, who suggested it in 1972, although other mathematicians had considered similar problems around the same time.
The secretary problem demonstrates a scenario involving optimal stopping theory that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem, the sultan's dowry problem, the fussy suitor problem, the googol game, and the best choice problem. Its solution is also known as the 37% rule.
Mathematics can be used to study Sudoku puzzles to answer questions such as "How many filled Sudoku grids are there?", "What is the minimal number of clues in a valid puzzle?" and "In what ways can Sudoku grids be symmetric?" through the use of combinatorics and group theory.
A Survo puzzle is a kind of logic puzzle presented and studied by Seppo Mustonen. The name of the puzzle is associated with Mustonen's Survo system, which is a general environment for statistical computing and related areas.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
"Cheryl's Birthday" is a logic puzzle, specifically a knowledge puzzle. The objective is to determine the birthday of a girl named Cheryl using a handful of clues given to her friends Albert and Bernard. Written by Dr Joseph Yeo Boon Wooi of Singapore's National Institute of Education, the question was posed as part of the Singapore and Asian Schools Math Olympiad (SASMO) in 2015, and was first posted online by Singapore television presenter Kenneth Kong. It went viral in a matter of days and also hit national television in all major cities globally. Henry Ong, the Founder of SASMO was interviewed by Singapore's Mediacorp program FIVE hosts Chua En Lai and Yasmine Yonkers.
In recreational mathematics, rope-burning puzzles are a class of mathematical puzzle in which one is given lengths of rope, fuse cord, or shoelace that each burn for a given amount of time, and matches to set them on fire, and must use them to measure a non-unit amount of time. The fusible numbers are defined as the amounts of time that can be measured in this way.