Super-resolution optical fluctuation imaging

Last updated

Super-resolution optical fluctuation imaging (SOFI) is a post-processing method for the calculation of super-resolved images from recorded image time series that is based on the temporal correlations of independently fluctuating fluorescent emitters.

Contents

SOFI has been developed for super-resolution of biological specimen that are labelled with independently fluctuating fluorescent emitters (organic dyes, fluorescent proteins). In comparison to other super-resolution microscopy techniques such as STORM or PALM that rely on single-molecule localization and hence only allow one active molecule per diffraction-limited area (DLA) and timepoint, [1] [2] SOFI does not necessitate a controlled photoswitching and/ or photoactivation as well as long imaging times. [3] [4] Nevertheless, it still requires fluorophores that are cycling through two distinguishable states, either real on-/off-states or states with different fluorescence intensities. In mathematical terms SOFI-imaging relies on the calculation of cumulants, for what two distinguishable ways exist. For one thing an image can be calculated via auto-cumulants [3] that by definition only rely on the information of each pixel itself, and for another thing an improved method utilizes the information of different pixels via the calculation of cross-cumulants. [5] Both methods can increase the final image resolution significantly although the cumulant calculation has its limitations. Actually SOFI is able to increase the resolution in all three dimensions. [3]

Principle

Principle of the SOFI auto-cumulant calculation (A) Schematic depiction of a CCD-pixel grid containing several emitter-signals (B) Cut-out of two fluorophores with their signals convolved with the system's PSF, recorded in an image stack (C) The signals on every pixel are evaluated by cumulant calculation (a process that can be understood in terms of a correlation and integration) SuperresolutionOFI1.pdf
Principle of the SOFI auto-cumulant calculation(A) Schematic depiction of a CCD-pixel grid containing several emitter-signals (B) Cut-out of two fluorophores with their signals convolved with the system's PSF, recorded in an image stack (C) The signals on every pixel are evaluated by cumulant calculation (a process that can be understood in terms of a correlation and integration)

Likewise to other super-resolution methods SOFI is based on recording an image time series on a CCD- or CMOS camera. In contrary to other methods the recorded time series can be substantially shorter, since a precise localization of emitters is not required and therefore a larger quantity of activated fluorophores per diffraction-limited area is allowed. The pixel values of a SOFI-image of the n-th order are calculated from the values of the pixel time series in the form of a n-th order cumulant, whereas the final value assigned to a pixel can be imagined as the integral over a correlation function. The finally assigned pixel value intensities are a measure of the brightness and correlation of the fluorescence signal. Mathematically, the n-th order cumulant is related to the n-th order correlation function, but exhibits some advantages concerning the resulting resolution of the image. Since in SOFI several emitters per DLA are allowed, the photon count at each pixel results from the superposition of the signals of all activated nearby emitters. The cumulant calculation now filters the signal and leaves only highly correlated fluctuations. This provides a contrast enhancement and therefore a background reduction for good measure. As it is implied in the figure on the left the fluorescence source distribution:

is convolved with the system's point spread function (PSF) U(r). Hence the fluorescence signal at time t and position is given by

Within the above equations N is the amount of emitters, located at the positions with a time-dependent molecular brightness where is a variable for the constant molecular brightness and is a time-dependent fluctuation function. The molecular brightness is just the average fluorescence count-rate divided by the number of molecules within a specific region. For simplification it has to be assumed that the sample is in a stationary equilibrium and therefore the fluorescence signal can be expressed as a zero-mean fluctuation:

where denotes time-averaging. The auto-correlation here e.g. the second-order can then be described deductively as follows for a certain time-lag :

From these equations it follows that the PSF of the optical system has to be taken to the power of the order of the correlation. Thus in a second-order correlation the PSF would be reduced along all dimensions by a factor of . As a result, the resolution of the SOFI-images increases according to this factor.

Cumulants versus correlations

Using only the simple correlation function for a reassignment of pixel values, would ascribe to the independency of fluctuations of the emitters in time in a way that no cross-correlation terms would contribute to the new pixel value. Calculations of higher-order correlation functions would suffer from lower-order correlations for what reason it is superior to calculate cumulants, since all lower-order correlation terms vanish.

Cumulant-calculation

Auto-cumulants

For computational reasons it is convenient to set all time-lags in higher-order cumulants to zero so that a general expression for the n-th order auto-cumulant can be found: [3]

is a specific correlation based weighting function influenced by the order of the cumulant and mainly depending on the fluctuation properties of the emitters.

Albeit there is no fundamental limitation in calculating very high orders of cumulants and thereby shrinking the FWHM of the PSF there are practical limitations according to the weighting of the values assigned to the final image. Emitters with a higher molecular brightness will show a strong increase in terms of the pixel cumulant value assigned at higher-orders as well as this performance can be expected from a diverse appearance of fluctuations of different emitters. A wide intensity range of the resulting image can therefore be expected and as a result dim emitters can get masked by bright emitters in higher-order images:. [3] [5] The calculation of auto-cumulants can be realized in a very attractive way in a mathematical sense. The n-th order cumulant can be calculated with a basic recursion from moments [6]

where K is a cumulant of the index's order, likewise represents the moments. The term within the brackets indicates a binomial coefficient. This way of computation is straightforward in comparison with calculating cumulants with standard formulas. It allows for the calculation of cumulants with only little time of computing and is, as it is well implemented, even suitable for the calculation of high-order cumulants on large images.

Cross-cumulants

Principles of SOFI Cross-cumulant Calculation and Distance-factor: (A) 4th-order cross-cumulant calculation with "combinations with repetitions". (B) Distance-factor decay along the arrows. Sofi2cc.pdf
Principles of SOFI Cross-cumulant Calculation and Distance-factor:(A) 4th-order cross-cumulant calculation with "combinations with repetitions". (B) Distance-factor decay along the arrows.

In a more advanced approach cross-cumulants are calculated by taking the information of several pixels into account. Cross-cumulants can be described as follows: [5] [7]

j, l and k are indices for contributing pixels whereas i is the index for the current position. All other values and indices are used as before. The major difference in the comparison of this equation with the equation for the auto-cumulants is the appearance of a weighting-factor . This weighting-factor (also termed distance-factor) is PSF-shaped and depends on the distance of the cross-correlated pixels in a sense that the contribution of each pixels decays along the distance in a PSF-shaped manner. In principle this means that the distance-factor is smaller for pixels that are further apart. The cross-cumulant approach can be used to create new, virtual pixels revealing true information about the labelled specimen by reducing the effective pixel size. These pixels carry more information than pixels that arise from simple interpolation.

In addition the cross-cumulant approach can be used to estimate the PSF of the optical system by making use of the intensity differences of the virtual pixels that is due to the "loss" in cross-correlation as aforementioned. [5] Each virtual pixel can be re-weighted with the inverse of the distance-factor of the pixel leading to a restoration of the true cumulant value. At last the PSF can be used to create a resolution dependency of n for the nth-order cumulant by re-weighting the "optical transfer function" (OTF). [5] This step can also be replaced by using the PSF for a deconvolution that is associated with less computational cost.

Cross-cumulant calculation requires the usage of a computational much more expensive formula that comprises the calculation of sums over partitions. This is of course owed to the combination of different pixels to assign a new value. Hence no fast recursive approach is usable at this point. For the calculation of cross-cumulants the following equation can be used: [8]

In this equation P denotes the amount of possible partitions, p denotes the different parts of each partition. In addition i is the index for the different pixel positions taken into account during the calculation what for F is just the image stack of the different contributing pixels. The cross-cumulant approach facilitates the generation of virtual pixels depending on the order of the cumulant as previously mentioned. These virtual pixels can be calculated in a particular pattern from the original pixels for a 4th-order cross-cumulant image, as it is depicted in the lower image, part A. The pattern itself arises simple from the calculation of all possible combinations of the original image pixels A, B, C and D. Here this was done by a scheme of "combinations with repetitions". Virtual pixels exhibit a loss in intensity that is due to the correlation itself. Part B of the second image depicts this general dependency of the virtual pixels on the cross-correlation. To restore meaningful pixel values the image is smoothed by a routine that defines a distance-factor for each pixel of the virtual pixel grid in a PSF-shaped manner and applies the inverse on all image pixels that are related to the same distance-factor. [5] [7]

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Ray tracing (graphics)</span> Rendering method

In 3-D computer graphics, ray tracing is a technique for modeling light transport for use in a wide variety of rendering algorithms for generating digital images.

In probability theory and statistics, the cumulantsκn of a probability distribution are a set of quantities that provide an alternative to the moments of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa.

<span class="mw-page-title-main">Electrostatics</span> Study of stationary or slow-moving electric charges

Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. These may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

<span class="mw-page-title-main">Lamb shift</span> Difference in energy of hydrogenic atom electron states not predicted by the Dirac equation

In physics the Lamb shift, named after Willis Lamb, refers to an anomalous difference in energy between two electron orbitals in a hydrogen atom. The difference was not predicted by theory and it cannot be derived from the Dirac equation, which predicts identical energies. Hence the Lamb shift refers to a deviation from theory seen in the differing energies contained by the 2S1/2 and 2P1/2 orbitals of the hydrogen atom.

Optical resolution describes the ability of an imaging system to resolve detail, in the object that is being imaged. An imaging system may have many individual components, including one or more lenses, and/or recording and display components. Each of these contributes to the optical resolution of the system; the environment in which the imaging is done often is a further important factor.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

<span class="mw-page-title-main">Optical transfer function</span> Function that specifies how different spatial frequencies are captured by an optical system

The optical transfer function (OTF) of an optical system such as a camera, microscope, human eye, or projector specifies how different spatial frequencies are captured or transmitted. It is used by optical engineers to describe how the optics project light from the object or scene onto a photographic film, detector array, retina, screen, or simply the next item in the optical transmission chain. A variant, the modulation transfer function (MTF), neglects phase effects, but is equivalent to the OTF in many situations.

<span class="mw-page-title-main">Voigt effect</span>

The Voigt effect is a magneto-optical phenomenon which rotates and elliptizes linearly polarised light sent into an optically active medium. The effect is named after the German scientist Woldemar Voigt who discovered it in vapors. Unlike many other magneto-optical effects such as the Kerr or Faraday effect which are linearly proportional to the magnetization, the Voigt effect is proportional to the square of the magnetization and can be seen experimentally at normal incidence. There are also other denominations for this effect, used interchangeably in the modern scientific literature: the Cotton–Mouton effect and magnetic-linear birefringence, with the latter reflecting the physical meaning of the effect.

Resonance fluorescence is the process in which a two-level atom system interacts with the quantum electromagnetic field if the field is driven at a frequency near to the natural frequency of the atom.

<span class="mw-page-title-main">Active contour model</span>

Active contour model, also called snakes, is a framework in computer vision introduced by Michael Kass, Andrew Witkin, and Demetri Terzopoulos for delineating an object outline from a possibly noisy 2D image. The snakes model is popular in computer vision, and snakes are widely used in applications like object tracking, shape recognition, segmentation, edge detection and stereo matching.

<span class="mw-page-title-main">Tethered particle motion</span>

Tethered particle motion (TPM) is a biophysical method that is used for studying various polymers such as DNA and their interaction with other entities such as proteins.

The quantum-confined Stark effect (QCSE) describes the effect of an external electric field upon the light absorption spectrum or emission spectrum of a quantum well (QW). In the absence of an external electric field, electrons and holes within the quantum well may only occupy states within a discrete set of energy subbands. Only a discrete set of frequencies of light may be absorbed or emitted by the system. When an external electric field is applied, the electron states shift to lower energies, while the hole states shift to higher energies. This reduces the permitted light absorption or emission frequencies. Additionally, the external electric field shifts electrons and holes to opposite sides of the well, decreasing the overlap integral, which in turn reduces the recombination efficiency of the system. The spatial separation between the electrons and holes is limited by the presence of the potential barriers around the quantum well, meaning that excitons are able to exist in the system even under the influence of an electric field. The quantum-confined Stark effect is used in QCSE optical modulators, which allow optical communications signals to be switched on and off rapidly.

Ultrasound-modulated optical tomography (UOT), also known as Acousto-Optic Tomography (AOT), is a hybrid imaging modality that combines light and sound; it is a form of tomography involving ultrasound. It is used in imaging of biological soft tissues and has potential applications for early cancer detection. As a hybrid modality which uses both light and sound, UOT provides some of the best features of both: the use of light provides strong contrast and sensitivity ; these two features are derived from the optical component of UOT. The use of ultrasound allows for high resolution, as well as a high imaging depth. However, the difficulty of tackling the two fundamental problems with UOT have caused UOT to evolve relatively slowly; most work in the field is limited to theoretical simulations or phantom / sample studies.

The optical metric was defined by German theoretical physicist Walter Gordon in 1923 to study the geometrical optics in curved space-time filled with moving dielectric materials.

The cluster-expansion approach is a technique in quantum mechanics that systematically truncates the BBGKY hierarchy problem that arises when quantum dynamics of interacting systems is solved. This method is well suited for producing a closed set of numerically computable equations that can be applied to analyze a great variety of many-body and/or quantum-optical problems. For example, it is widely applied in semiconductor quantum optics and it can be applied to generalize the semiconductor Bloch equations and semiconductor luminescence equations.

Optical gain is the most important requirement for the realization of a semiconductor laser because it describes the optical amplification in the semiconductor material. This optical gain is due to stimulated emission associated with light emission created by recombination of electrons and holes. While in other laser materials like in gas lasers or solid state lasers, the processes associated with optical gain are rather simple, in semiconductors this is a complex many-body problem of interacting photons, electrons, and holes. Accordingly, understanding these processes is a major objective as being a basic requirement for device optimization. This task can be solved by development of appropriate theoretical models to describe the semiconductor optical gain and by comparison of the predictions of these models with experimental results found.

Super-resolution photoacoustic imaging is a set of techniques used to enhance spatial resolution in photoacoustic imaging. Specifically, these techniques primarily break the optical diffraction limit of the photoacoustic imaging system. It can be achieved in a variety of mechanisms, such as blind structured illumination, multi-speckle illumination, or photo-imprint photoacoustic microscopy in Figure 1.

Lightfieldmicroscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field. This technique allows sub-second (~10 Hz) large volumetric imaging with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods. Just as in traditional light field rendering, there are two steps for LFM imaging: light field capture and processing. In most setups, a microlens array is used to capture the light field. As for processing, it can be based on two kinds of representations of light propagation: the ray optics picture and the wave optics picture. The Stanford University Computer Graphics Laboratory published their first prototype LFM in 2006 and has been working on the cutting edge since then.

References

  1. Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S. Bonifacino, Michael W. Davidson, Jennifer Lippincott-Schwartz, Harald F. Hess: Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,Science,Vol. 313 no. 5793, 2006, pp. 1642–1645. doi:10.1126/science.1127344
  2. S. v.d.Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer: Direct stochastical optical reconstruction microscopy with standard fluorescent probes, Nature Protocols, Vol. 6, 2011, pp. 991–1009. doi:10.1038/nprot.2011.336
  3. 1 2 3 4 5 T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein: Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI), PNAS, Vol. 106 no. 52, 2009, pp. 22287–22292. doi:10.1073/pnas.0907866106
  4. S. Geissbuehler, C. Dellagiacoma, T. Lasser: Comparison between SOFI and STORM, Biomedical Optics Express, Vol. 2 Issue 3, 2011, pp. 408–420. doi:10.1364/BOE.2.000408
  5. 1 2 3 4 5 6 T. Dertinger, R. Colyer, R. Vogel, J. Enderlein, S. Weiss: Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI), Optics Express, Vol. 18 Issue 18, 2010, pp. 18875–18885. doi:10.1364/OE.18.018875
  6. P. T. Smith: A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa, The American Statistician, Vol. 49 Issue 2, 1995, pp. 217–218. doi:10.1080/00031305.1995.10476146
  7. 1 2 S. Geissbuehler, N.L. Bocchio, C. Dellagiacoma, C. Berclaz, M. Leutenegger, T. Lasser: Mapping molecular statistics with balanced super-resolution optical fluctuation imaging (bSOFI), Optical Nanoscopy, Vol. 1, 2012, pp. 1–4. doi:10.1186/2192-2853-1-4
  8. J. M. Mendel: Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory: Theoretical Results and Some Applications, Proceedings of the IEEE, Vol. 79 Issue 3, 1991, pp. 278–297. doi:10.1109/5.75086