Supriyo Bandyopadhyay | |
---|---|
Alma mater | Indian Institute of Technology, Kharagpur Southern Illinois University Purdue University |
Occupation(s) | Electrical engineer, academic and researcher |
Awards | Lifetime Achievement Award, Department of Electrical and Computer Engineering, Virginia Commonwealth University Virginia’s Outstanding Scientist, named by Governor Terence R. McAuliffe of Virginia University Pioneer in Nanotechnology Award, Institute of Electrical and Electronics Engineers |
Scientific career | |
Institutions | Virginia Commonwealth University |
Supriyo Bandyopadhyay is an Indian-born American electrical engineer, academic and researcher. He is Commonwealth Professor of Electrical and Computer Engineering at Virginia Commonwealth University, where he directs the Quantum Device Laboratory. [1]
Bandyopadhyay has authored over 400 research publications [2] on a wide range of topics including spintronics, straintronics, nanoelectronics and related aspects of nanotechnology. He is also the author of three textbooks entitled Physics of Nanostructured Solid State Devices,Introduction to Spintronics, and Problem Solving in Quantum Mechanics: From Basics to Real World Applications for Materials Scientists, Applied Physicists and Device Engineers. [3]
Bandyopadhyay is a Fellow of the Institute of Physics (UK), the Institute of Electrical and Electronics Engineers (IEEE), [4] The Electrochemical Society, [5] the American Physical Society, and the American Association for the Advancement of Science.
Bandyopadhyay received his B.Tech. degree in Electronics and Electrical Communications Engineering from Indian Institute of Technology, Kharagpur in 1980. He then earned his M.S. degree in Electrical Engineering from Southern Illinois University in 1982, and a Ph.D. degree in Electrical Engineering from Purdue University in 1985.
Following his Doctoral degree, Bandyopadhyay held a brief appointment as a Visiting Assistant Professor of Electrical Engineering at Purdue University before joining the University of Notre Dame in 1987 as an Assistant Professor of Electrical Engineering. From 1990 till 1996, he served as an Associate Professor there. He subsequently joined the University of Nebraska-Lincoln as a Professor of Electrical Engineering in 1996. In 2001, he joined Virginia Commonwealth University and held a primary appointment as Professor of Electrical Engineering in the Department of Electrical and Computer Engineering and courtesy appointment as a Professor of Physics in the Department of Physics. Since 2011, he has been serving as Commonwealth Professor Virginia Commonwealth University. [1]
Bandyopadhyay served as a Jefferson Science Fellow for the US National Academies of Science, Engineering and Medicine during 2020–2021, and was a Senior Adviser to the USAID Bureau of Europe and Eurasia in the Division of Energy and Infrastructure at Washington, DC. He is also the founding Chair of the Institute of Electrical and Electronics Engineers (IEEE) Technical Committee on Spintronics (Nanotechnology Council), and past-chair of the Technical Committee on Compound Semiconductor Devices and Circuits (Electron Device Society). He was an IEEE Electron Device Society Distinguished Lecturer from 2005 to 2012, and was an IEEE Nanotechnology Council Distinguished Lecturer in 2016 and 2017. He is a past Vice President of the IEEE Nanotechnology Council in charge of conferences and is currently serving as a Vice President of the same organization in charge of publications. He served in the IEEE Fellow Committee from 2016 until 2018. [6]
Bandyopadhyay has worked extensively on spintronics, straintronics, nanoelectronics, nanosynthesis, electrochemical self-assembly, quantum dots and nanowires, hot carrier and quantum transport of charge in solids, spin based quantum computing and classical logic circuits, spin transport in nanostructures, and spin-based devices and general topics in spintronics. [7]
Bandyopadhyay developed several electrochemical techniques to produce well-ordered regimented arrays of nanostructures. He has demonstrated new functionalities in nanoscale devices. [8] [9]
Bandyopadhyay's most recent work has involved switching nanomagnets with electrically generated strain to produce energy-efficient digital information processing hardware. He is a pioneer in the field of hybrid spintronics and straintronics, [10] [11] His group harnessed straintronics to demonstrate an extreme sub-wavelength electromagnetic antenna that overcame the theoretical limits on antenna gain and efficiency and exceeded them by several orders of magnitude. [12] He and his collaborators also conducted a study in 2021 to demonstrate resonant amplification of spin waves in a periodic two-dimensional interacting array of multiferroic nanomagnets which would have applications in magnonic devices. [13]
Spintronics, also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.
Burkard Hillebrands is a German physicist and professor of physics. He is the leader of the magnetism research group in the Department of Physics at the Technische Universität Kaiserslautern.
Mark Arthur Reed was an American physicist and professor at Yale University. He is noted particularly for seminal research on quantum dots.
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.
Evelyn L. Hu is the Tarr-Coyne Professor of Applied Physics and of Electrical Engineering at Harvard University. Hu has made major contributions to nanotechnology by designing and creating complex nanostructures. Her work has focused on nanoscale devices made from compound semiconductors and on novel devices made by integrating various materials, both organic and inorganic. She has also created nanophotonic structures that might someday facilitate quantum computing.
Alexander A. Balandin is an electrical engineer, solid-state physicist, and materials scientist best known for the experimental discovery of unique thermal properties of graphene and their theoretical explanation; studies of phonons in nanostructures and low-dimensional materials, which led to the development of the field of phonon engineering; investigation of low-frequency electronic noise in materials and devices; and demonstration of the first charge-density-wave quantum devices operating at room temperature.
Supriyo Datta is an Indian–American researcher and author. A leading figure in the modeling and understanding of nano-scale electronic conduction, he has been called "one of the most original thinkers in the field of nanoscale electronics."
Kang Lung Wang is recognized as the discoverer of chiral Majorana fermions by IUPAP. Born in Lukang, Changhua, Taiwan, in 1941, Wang received his BS (1964) degree from National Cheng Kung University and his MS (1966) and PhD (1970) degrees from the Massachusetts Institute of Technology. In 1970 to 1972 he was the Assistant Professor at MIT. From 1972 to 1979, he worked at the General Electric Corporate Research and Development Center as a physicist/engineer. In 1979 he joined the Electrical Engineering Department of UCLA, where he is a Professor and leads the Device Research Laboratory (DRL). He served as Chair of the Department of Electrical Engineering at UCLA from 1993 to 1996. His research activities include semiconductor nano devices, and nanotechnology; self-assembly growth of quantum structures and cooperative assembly of quantum dot arrays Si-based Molecular Beam Epitaxy, quantum structures and devices; Nano-epitaxy of hetero-structures; Spintronics materials and devices; Electron spin and coherence properties of SiGe and InAs quantum structures for implementation of spin-based quantum information; microwave devices. He was the inventor of strained layer MOSFET, quantum SRAM cell, and band-aligned superlattices. He holds 45 patents and published over 700 papers. He is a passionate teacher and has mentored hundreds of students, including MS and PhD candidates. Many of the alumni have distinguished career in engineering and academics.
Siegfried Selberherr is an Austrian scientist in the field of microelectronics. He is a professor at the Institute for Microelectronics of the Technische Universität Wien . His primary research interest is in modeling and simulation of physical phenomena in the field of microelectronics.
Gerhard Klimeck is a German-American scientist and author in the field of nanotechnology. He is a professor of Electrical and Computer Engineering at Purdue University School of Electrical and Computer Engineering.
Hideo Ohno is a Japanese physicist. He is the 22nd president of Tohoku University, succeeding Susumu Satomi in April 2018.
Alan T. Charlie Johnson is an American physicist and a professor in physics and astronomy at the University of Pennsylvania. Johnson currently serves as the founding executive editor of the scientific journal AIP Advances and the co-founder of Graphene Frontiers, LLC.
Chennupati Jagadish, an Indian-Australian physicist and academic, is the President of the Australian Academy of Science, and a Distinguished Professor of Physics at the Australian National University Research School of Physics. He is head of the Semiconductor Optoelectronics and Nanotechnology Group which he established in 1990. He is also the Convener of the Australian Nanotechnology Network and Director of Australian National Fabrication Facility ACT Node.
David A. B. Miller is the W. M. Keck Foundation Professor of Electrical Engineering at Stanford University, where he is also a professor of Applied Physics by courtesy. His research interests include the use of optics in switching, interconnection, communications, computing, and sensing systems, physics and applications of quantum well optics and optoelectronics, and fundamental features and limits for optics and nanophotonics in communications and information processing.
Shun Lien Chuang was a Taiwanese-American electrical engineer, optical engineer, and physicist. He was a Fellow of the IEEE, OSA, APS and JSPS, and professor at the University of Illinois at Urbana-Champaign.
Kannan M. Krishnan is an Indian-American academic, author and entrepreneur. He is a professor of materials science and engineering, an adjunct professor of physics, and an Associate Faculty of the South Asia Centre, at the University of Washington, Seattle (UW).
Caroline Anne Ross is a British physicist and professor at the Massachusetts Institute of Technology who was named as a Fellow of the American Physical Society in 2004 for innovative research into the magnetic properties of thin film and nanoscale structures, and for the development of novel lithographic and self-assembly methods for nanostructure fabrication and named Fellow of the Institute of Electrical and Electronics Engineers (IEEE) in 2013 for contributions to synthesis and characterization of nanoscale structures and films for magnetic and magneto-optical devices. She is the Associate Head of the Department of Materials Science and Engineering at MIT.
Jean-Pierre Leburton is the Gregory E. Stillman Professor of Electrical and Computer Engineering and professor of Physics at the University of Illinois Urbana–Champaign. He is also a full-time faculty member in the Nanoelectronics and Nanomaterials group of the Beckman Institute for Advanced Science and Technology. He is known for his work on semiconductor theory and simulation, and on nanoscale quantum devices including quantum wires, quantum dots, and quantum wells. He studies and develops nanoscale materials with potential electronic and biological applications.
Professor Lan Wang is a Chinese-Australian material scientist known for expertise in materials synthesis and advanced materials characterisation.
Xiuling Li is a distinguished electrical and computer engineering professor in the field of nanostructured semiconductor devices. She is currently the Temple Foundation Endowed Professorship No. 3 in Electrical and Computer Engineering and Fellow of the Dow Professor in Chemistry at the University of Texas at Austin. Previously, she was a Donald Biggar Willet Professor in Electrical and Computer Engineering and Interim Director of the Nick Holonyak Jr. Micro and Nanotechnology Laboratory at the University of Illinois at Urbana-Champaign.