Surface energy transfer

Last updated
Comparison of energy transfer efficiency between SET and Forster resonance energy transfer (FRET) SET vs FRET.png
Comparison of energy transfer efficiency between SET and Förster resonance energy transfer (FRET)

Surface energy transfer (SET) is a dipole-surface energy transfer process involving a metallic surface and a molecular dipole. [1]

Contents

Formula

The SET rate follows the inverse of the fourth power of the distance [2]

where

Efficiency

The energy transfer efficiency also follows a similar form

Due to the fourth power dependence SET can cover a distance more than 15 nm, which is almost twice the efficiency of FRET. [3] Theoretically predicted in 1978 by Chance et al. it was proved experimentally in 2000s by different workers. [4]

Applications

The efficiency of SET as nanoruler has been used in live cells. [5]

Gold nano particles are frequently used in these studies as the nanoparticle surface.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Superparamagnetism</span>

Superparamagnetism is a form of magnetism which appears in small ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, magnetization can randomly flip direction under the influence of temperature. The typical time between two flips is called the Néel relaxation time. In the absence of an external magnetic field, when the time used to measure the magnetization of the nanoparticles is much longer than the Néel relaxation time, their magnetization appears to be in average zero; they are said to be in the superparamagnetic state. In this state, an external magnetic field is able to magnetize the nanoparticles, similarly to a paramagnet. However, their magnetic susceptibility is much larger than that of paramagnets.

The nuclear Overhauser effect (NOE) is the transfer of nuclear spin polarization from one population of spin-active nuclei to another via cross-relaxation. A phenomenological definition of the NOE in nuclear magnetic resonance spectroscopy (NMR) is the change in the integrated intensity of one NMR resonance that occurs when another is saturated by irradiation with an RF field. The change in resonance intensity of a nucleus is a consequence of the nucleus being close in space to those directly affected by the RF perturbation.

<span class="mw-page-title-main">Förster resonance energy transfer</span> Photochemical energy transfer mechanism

Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

<span class="mw-page-title-main">Madelung constant</span> Constant in crystallography

The Madelung constant is used in determining the electrostatic potential of a single ion in a crystal by approximating the ions by point charges. It is named after Erwin Madelung, a German physicist.

<span class="mw-page-title-main">Inelastic mean free path</span> Index of how far electrons travel through a solid before losing energy

The inelastic mean free path (IMFP) is an index of how far an electron on average travels through a solid before losing energy.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

In physics, Larmor precession is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,

<span class="mw-page-title-main">Quenching (fluorescence)</span> Reduction of light emitted from fluorescent substances

In chemistry, quenching refers to any process which decreases the fluorescent intensity of a given substance. A variety of processes can result in quenching, such as excited state reactions, energy transfer, complex-formation and collisions. As a consequence, quenching is often heavily dependent on pressure and temperature. Molecular oxygen, iodine ions and acrylamide are common chemical quenchers. The chloride ion is a well known quencher for quinine fluorescence. Quenching poses a problem for non-instant spectroscopic methods, such as laser-induced fluorescence.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

In MRI and NMR spectroscopy, an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequency (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-latticerelaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).

Fluorescence anisotropy or fluorescence polarization is the phenomenon where the light emitted by a fluorophore has unequal intensities along different axes of polarization. Early pioneers in the field include Aleksander Jablonski, Gregorio Weber, and Andreas Albrecht. The principles of fluorescence polarization and some applications of the method are presented in Lakowicz's book.

In nuclear chemistry and nuclear physics, J-couplings are mediated through chemical bonds connecting two spins. It is an indirect interaction between two nuclear spins that arises from hyperfine interactions between the nuclei and local electrons. In NMR spectroscopy, J-coupling contains information about relative bond distances and angles. Most importantly, J-coupling provides information on the connectivity of chemical bonds. It is responsible for the often complex splitting of resonance lines in the NMR spectra of fairly simple molecules.

<span class="mw-page-title-main">Dexter electron transfer</span>

Dexter electron transfer is a fluorescence quenching mechanism in which an excited electron is transferred from one molecule to a second molecule via a non radiative path. This process requires a wavefunction overlap between the donor and acceptor, which means it can only occur at short distances; typically within 10 Å. The excited state may be exchanged in a single step, or in two separate charge exchange steps.

<span class="mw-page-title-main">Förster coupling</span> Resonant energy transfer between excitons within adjacent QDs (quantum dots)

Förster coupling is the resonant energy transfer between excitons within adjacent QD's. The first studies of Forster were performed in the context of the sensitized luminescence of solids. Here, an excited sensitizer atom can transfer its excitation to a neighbouring acceptor atom, via an intermediate virtual photon. This same mechanism has also been shown to be responsible for exciton transfer between QD's and within molecular systems and biosystems, all of which may be treated in a similar formulation.

Electron nuclear double resonance (ENDOR) is a magnetic resonance technique for elucidating the molecular and electronic structure of paramagnetic species. The technique was first introduced to resolve interactions in electron paramagnetic resonance (EPR) spectra. It is currently practiced in a variety of modalities, mainly in the areas of biophysics and heterogeneous catalysis.

<span class="mw-page-title-main">Metadynamics</span> Scientific computer simulation method

Metadynamics is a computer simulation method in computational physics, chemistry and biology. It is used to estimate the free energy and other state functions of a system, where ergodicity is hindered by the form of the system's energy landscape. It was first suggested by Alessandro Laio and Michele Parrinello in 2002 and is usually applied within molecular dynamics simulations. MTD closely resembles a number of newer methods such as adaptively biased molecular dynamics, adaptive reaction coordinate forces and local elevation umbrella sampling. More recently, both the original and well-tempered metadynamics were derived in the context of importance sampling and shown to be a special case of the adaptive biasing potential setting. MTD is related to the Wang–Landau sampling.

Giant oscillator strength is inherent in excitons that are weakly bound to impurities or defects in crystals.

The trigonometric Rosen–Morse potential, named after the physicists Nathan Rosen and Philip M. Morse, is among the exactly solvable quantum mechanical potentials.

In chemistry, catalytic resonance theory was developed to describe the kinetics of reaction acceleration using dynamic catalyst surfaces. Catalytic reactions occurring on surfaces that undergo variation in surface binding energy and/or entropy exhibit overall increase in reaction rate when the surface binding energy frequencies are comparable to the natural frequencies of the surface reaction, adsorption, and desorption.

<span class="mw-page-title-main">Near-field radiative heat transfer</span>

Near-field radiative heat transfer (NFRHT) is a branch of radiative heat transfer which deals with situations for which the objects and/or distances separating objects are comparable or smaller in scale or to the dominant wavelength of thermal radiation exchanging thermal energy. In this regime, the assumptions of geometrical optics inherent to classical radiative heat transfer are not valid and the effects of diffraction, interference, and tunneling of electromagentic waves can dominate the net heat transfer. These "near-field effects" can result in heat transfer rates exceeding the blackbody limit of classical radiative heat transfer.

References

  1. Christopher J. Breshike; Ryan A. Riskowski & Geoffrey F. Strouse (2013). "Leaving Förster Resonance Energy Transfer Behind: Nanometal Surface Energy Transfer Predicts the Size-Enhanced Energy Coupling between a Metal Nanoparticle and an Emitting Dipole". J. Phys. Chem. C. 117 (45): 23942–23949. doi:10.1021/jp407259r.
  2. C. S. Yun; et al. (2005). "Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier". J. Am. Chem. Soc. 127 (9): 3115–3119. doi:10.1021/ja043940i. PMID   15740151.
  3. T. L. Jennings; M. P. Singh & G. F. Strouse (2006). "Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity". J. Am. Chem. Soc. 128 (16): 5462–5467. doi:10.1021/ja0583665. PMID   16620118.
  4. R. Chance; A. Prock & R. Silbey (1978). "Molecular Fluorescence and Energy Transfer Near Interfaces". Adv. Chem. Phys. Advances in Chemical Physics. 60: 1. doi:10.1002/9780470142561.ch1. ISBN   978-0-471-03459-9.
  5. Yan Chen; et al. (2010). "A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces". J. Am. Chem. Soc. 132 (46): 16559–16570. doi:10.1021/ja106360v. PMC   3059229 . PMID   21038856.