Sweet spot (acoustics)

Last updated

The sweet spot is a term used by audiophiles and recording engineers to describe the focal point between two speakers, where an individual is fully capable of hearing the stereo audio mix the way it was intended to be heard by the mixer. The sweet spot is the location which creates an equilateral triangle together with the stereo loudspeakers, the stereo triangle. In the case of surround sound, this is the focal point between four or more speakers, [1] [2] i.e., the location at which all wave fronts arrive simultaneously. In international recommendations the sweet spot is referred to as reference listening point. [3] [4]

Different static methods exist to broaden the area of the sweet spot. A discussion of methods and their benefits can be found in Merchel et al. [5] By means of such methods more than one listener can enjoy the sound experience as intended by the audio engineer, including the desired phantom source locations, spectral and spatial balance and degree of immersion. Alternatively, the sweet spot can be adjusted dynamically to the actual position of the listener. Therefore, a correct phantom source localization is possible over the whole listening area. This approach is implemented in the open source project SweetSpotter. Massive multi-channel audio systems that apply wave field synthesis or higher order ambisonics exhibit an extended optimal listening area instead of a sweet spot. [6]

Sound engineers also refer to the sweet spot of any noise-producing body that may be captured with a microphone. Every individual instrument has its own sweet spot, the perfect location to place the microphone or microphones, in order to obtain the best sound.

Related Research Articles

Binaural recording Method of recording sound

Binaural recording is a method of recording sound that uses two microphones, arranged with the intent to create a 3-D stereo sound sensation for the listener of actually being in the room with the performers or instruments. This effect is often created using a technique known as dummy head recording, wherein a mannequin head is fitted with a microphone in each ear. Binaural recording is intended for replay using headphones and will not translate properly over stereo speakers. This idea of a three-dimensional or "internal" form of sound has also translated into useful advancement of technology in many things such as stethoscopes creating "in-head" acoustics and IMAX movies being able to create a three-dimensional acoustic experience.

Ambisonics Full-sphere surround sound format

Ambisonics is a full-sphere surround sound format: in addition to the horizontal plane, it covers sound sources above and below the listener.

Surround sound System with loudspeakers that surround the listener

Surround sound is a technique for enriching the fidelity and depth of sound reproduction by using multiple audio channels from speakers that surround the listener. Its first application was in movie theaters. Prior to surround sound, theater sound systems commonly had three screen channels of sound that played from three loudspeakers located in front of the audience. Surround sound adds one or more channels from loudspeakers to the side or behind the listener that are able to create the sensation of sound coming from any horizontal direction around the listener.

Monaural Sound intended to be heard as if it were emanating from one position

Monaural or monophonic sound reproduction is sound intended to be heard as if it were emanating from one position. This contrasts with stereophonic sound or stereo, which uses two separate audio channels to reproduce sound from two microphones on the right and left side, which is reproduced with two separate loudspeakers to give a sense of the direction of sound sources. In mono, only one loudspeaker is necessary, but, when played through multiple loudspeakers or headphones, identical signals are fed to each speaker, resulting in the perception of one-channel sound "imaging" in one sonic space between the speakers. Monaural recordings, like stereo ones, typically use multiple microphones fed into multiple channels on a recording console, but each channel is "panned" to the center. In the final stage, the various center-panned signal paths are usually mixed down to two identical tracks, which, because they are identical, are perceived upon playback as representing a single unified signal at a single place in the soundstage. In some cases, multitrack sources are mixed to a one-track tape, thus becoming one signal. In the mastering stage, particularly in the days of mono records, the one- or two-track mono master tape was then transferred to a one-track lathe used to produce a master disc intended to be used in the pressing of a monophonic record. Today, however, monaural recordings are usually mastered to be played on stereo and multi-track formats, yet retain their center-panned mono soundstage characteristics.

The precedence effect or law of the first wavefront is a binaural psychoacoustical effect. When a sound is followed by another sound separated by a sufficiently short time delay, listeners perceive a single auditory event; its perceived spatial location is dominated by the location of the first-arriving sound. The lagging sound also affects the perceived location. However, its effect is suppressed by the first-arriving sound.

3D audio effects are a group of sound effects that manipulate the sound produced by stereo speakers, surround-sound speakers, speaker-arrays, or headphones. This frequently involves the virtual placement of sound sources anywhere in three-dimensional space, including behind, above or below the listener.

Stereophonic sound Method of sound reproduction using two audio channels

Stereophonic sound or, more commonly, stereo, is a method of sound reproduction that recreates a multi-directional, 3-dimensional audible perspective. This is usually achieved by using two independent audio channels through a configuration of two loudspeakers in such a way as to create the impression of sound heard from various directions, as in natural hearing.

Digital room correction Acoustics process

Digital room correction is a process in the field of acoustics where digital filters designed to ameliorate unfavorable effects of a room's acoustics are applied to the input of a sound reproduction system. Modern room correction systems produce substantial improvements in the time domain and frequency domain response of the sound reproduction system.

Stereo imaging refers to the aspect of sound recording and reproduction of stereophonic sound concerning the perceived spatial locations of the sound source(s), both laterally and in depth. An image is considered to be good if the location of the performers can be clearly identified; the image is considered to be poor if the location of the performers is difficult to locate. A well-made stereo recording, properly reproduced, can provide good imaging within the front quadrant.

Sound recording and reproduction Recording of sound and playing it back

Sound recording and reproduction is the electrical, mechanical, electronic, or digital inscription and re-creation of sound waves, such as spoken voice, singing, instrumental music, or sound effects. The two main classes of sound recording technology are analog recording and digital recording.

Wave field synthesis Technique for creating virtual acoustic environments

Wave field synthesis (WFS) is a spatial audio rendering technique, characterized by creation of virtual acoustic environments. It produces artificial wavefronts synthesized by a large number of individually driven loudspeakers. Such wavefronts seem to originate from a virtual starting point, the virtual source or notional source. Contrary to traditional spatialization techniques such as stereo or surround sound, the localization of virtual sources in WFS does not depend on or change with the listener's position.

Ambiophonics is a method in the public domain that employs digital signal processing (DSP) and two loudspeakers directly in front of the listener in order to improve reproduction of stereophonic and 5.1 surround sound for music, movies, and games in home theaters, gaming PCs, workstations, or studio monitoring applications. First implemented using mechanical means in 1986, today a number of hardware and VST plug-in makers offer Ambiophonic DSP. Ambiophonics eliminates crosstalk inherent in the conventional stereo triangle speaker placement, and thereby generates a speaker-binaural soundfield that emulates headphone-binaural sound, and creates for the listener improved perception of reality of recorded auditory scenes. A second speaker pair can be added in back in order to enable 360° surround sound reproduction. Additional surround speakers may be used for hall ambience, including height, if desired.

Audio engineer Engineer involved in the recording, reproduction, or reinforcement of sound

An audio engineer helps to produce a recording or a live performance, balancing and adjusting sound sources using equalization, dynamics processing and audio effects, mixing, reproduction, and reinforcement of sound. Audio engineers work on the "technical aspect of recording—the placing of microphones, pre-amp knobs, the setting of levels. The physical recording of any project is done by an engineer... the nuts and bolts."

Audio mixing (recorded music) Audio mixing to yield recorded sound

In sound recording and reproduction, audio mixing is the process of optimizing and combining multitrack recordings into a final mono, stereo or surround sound product. In the process of combining the separate tracks, their relative levels are adjusted and balanced and various processes such as equalization and compression are commonly applied to individual tracks, groups of tracks, and the overall mix. In stereo and surround sound mixing, the placement of the tracks within the stereo field are adjusted and balanced. Audio mixing techniques and approaches vary widely and have a significant influence on the final product.

A parabolic loudspeaker is a loudspeaker which seeks to focus its sound in coherent plane waves either by reflecting sound output from a speaker driver to a parabolic reflector aimed at the target audience, or by arraying drivers on a parabolic surface. The resulting beam of sound travels farther, with less dissipation in air, than horn loudspeakers, and can be more focused than line array loudspeakers allowing sound to be sent to isolated audience targets. The parabolic loudspeaker has been used for such diverse purposes as directing sound at faraway targets in performing arts centers and stadia, for industrial testing, for intimate listening at museum exhibits, and as a sonic weapon.

Amplitude panning is a technique in sound engineering where the same sound signal is applied to a number of loudspeakers in different directions equidistant from the listener. Then, a virtual source appears to a direction that is dependent on amplitudes of the loudspeakers. The direction may not coincide with any physical sound source. Most typically amplitude panning has been used with stereophonic loudspeaker setup. However, it is increasingly used to position virtual sources to arbitrary loudspeaker setups.

3D sound reconstruction is the application of reconstruction techniques to 3D sound localization technology. These methods of reconstructing three-dimensional sound are used to recreate sounds to match natural environments and provide spatial cues of the sound source. They also see applications in creating 3D visualizations on a sound field to include physical aspects of sound waves including direction, pressure, and intensity. This technology is used in entertainment to reproduce a live performance through computer speakers. The technology is also used in military applications to determine location of sound sources. Reconstructing sound fields is also applicable to medical imaging to measure points in ultrasound.

3D sound is most commonly defined as the daily human experience of sounds. The sounds arrive at the ears from every direction and varying distances, which contribute to the three-dimensional aural image humans hear. Scientists and engineers who work with 3D sound work to accurately synthesize the complexity of real-world sounds.

Apparent source width (ASW) is the audible impression of a spatially extended sound source. This psychoacoustic impression results from sound radiation characteristics and properties of an acoustic space. Wide sources are desired by listeners of music because these are associated with sound of acoustic music, opera, classical music, historically informed performance. Research concerning ASW comes from the field of room acoustics, architectural acoustics and auralization as well as musical acoustics, psychoacoustics and systematic musicology.

United Kingdom patent 394325 Seminal work on stereophonic sound by Alan Blumlein

The United Kingdom patent 394325 'Improvements in and relating to Sound-transmission, Sound-recording and Sound-reproducing Systems' is a fundamental work on stereophonic sound, written by Alan Blumlein in 1931 and published in 1933. The work exists only in the form of a patent and two accompanying memos addressed to Isaac Shoenberg. The text is exceptionally long for a patent of the period, having 70 numbered claims. It contains a brief summary of sound localization theory, a roadmap for introduction of surround sound in sound film and recording industry, and a description of Blumlein's inventions related to stereophony, notably the matrix processing of stereo signals, the Blumlein stereo microphone and the 45/45 mechanical recording system.

References

  1. Dolby Laboratories Licensing Corporation. "Dolby Surround Mixing Manual" (PDF). Dolby. pp. 2–7. Retrieved 1 June 2018.
  2. Frank, Mathias; Zotter, Franz; Wierstorf, Hagen; Spors, Sascha (2014). "Spatial Audio Rendering". In Möller, Sebastian; Raake, Alexander (eds.). Quality of Experience. Advanced Concepts, Applications and Methods. T-Labs Series in Telecommunication Services. Springer. p. 250. doi:10.1007/978-3-319-02681-7_17. ISBN   978-3-319-02681-7.
  3. "Multichannel stereophonic sound system with and without accompanying picture" (PDF). International Communication Union. International Communication Union. p. 2. Retrieved 1 June 2018.
  4. "Methods for the subjective assessment of small impairments in audio systems" (PDF). International Communication Union. International Communication Union. p. 13. Retrieved 1 June 2018.
  5. Merchel, S., Groth, S., Analysis and Implementation of a Stereophonic Play Back System for Adjusting the "Sweet Spot" to the Listener’s Position, Proceedings of 126th AES Convention, Munich, Germany, 2009.
  6. Ziemer, Tim (2018). "Wave Field Synthesis". Springer Handbook of Systematic Musicology. Springer Handbooks. Berlin, Heidelberg: Springer. p. 329. doi:10.1007/978-3-662-55004-5_18. ISBN   978-3-662-55004-5.

Further reading