Symlink race

Last updated

A symlink race is a kind of software security vulnerability that results from a program creating files in an insecure manner. [1] A malicious user can create a symbolic link to a file not otherwise accessible to them. When the privileged program creates a file of the same name as the symbolic link, it actually creates the linked-to file instead, possibly inserting content desired by the malicious user (see example below), or even provided by the malicious user (as input to the program).

Contents

It is called a "race" because in its typical manifestation, the program checks to see if a file by that name already exists; if it does not exist, the program then creates the file. An attacker must create the link in the interval between the check and when the file is created.

A symlink race can happen with antivirus products that decide they will quarantine or delete a suspicious file, and then go ahead and do that. During the interval between decision and action, malicious software can replace the suspicious file with a system or antivirus file that the malicious software wants overwritten. [2]

Example

In this naive example, the Unix program foo is setuid . Its function is to retrieve information for the accounts specified by the user. For "efficiency", it sorts the requested accounts into a temporary file (/tmp/foo naturally) before making the queries.

The directory /tmp is world-writable. Malicious user Mallory creates a symbolic link to the file /root/.rhosts named /tmp/foo. Then, Mallory invokes foo with user as the requested account. The program creates the (temporary) file /tmp/foo (really creating /root/.rhosts) and puts information about the requested account (e.g. user password) in it. It removes the temporary file (merely removing the symbolic link).

Now the /root/.rhosts contains password information, which (if it even happens to be in the proper format) is the incantation necessary to allow anyone to use rlogin to log into the computer as the superuser.

Also in some Unix-systems there is a special flag O_NOFOLLOW for open(2) to prevent opening a file via a symbolic-link (dangling or otherwise). It's become standardized in POSIX.1-2008.

Workaround

The POSIX C standard library function mkstemp can be used to safely create temporary files. For shell scripts, the system utility mktemp(1) does the same thing.

Related Research Articles

<span class="mw-page-title-main">GNU Hurd</span> Operating system kernel designed as a replacement for Unix

GNU Hurd is a collection of microkernel servers written as part of GNU, for the GNU Mach microkernel. It has been under development since 1990 by the GNU Project of the Free Software Foundation, designed as a replacement for the Unix kernel, and released as free software under the GNU General Public License. When the Linux kernel proved to be a viable solution, development of GNU Hurd slowed, at times alternating between stasis and renewed activity and interest.

<span class="mw-page-title-main">Maildir</span> E-mail format

The Maildir e-mail format is a common way of storing email messages in which each message is stored in a separate file with a unique name, and each mail folder is a file system directory. The local file system handles file locking as messages are added, moved and deleted. A major design goal of Maildir is to eliminate the need for program code to handle file locking and unlocking.

In computing, tar is a computer software utility for collecting many files into one archive file, often referred to as a tarball, for distribution or backup purposes. The name is derived from "tape archive", as it was originally developed to write data to sequential I/O devices with no file system of their own. The archive data sets created by tar contain various file system parameters, such as name, timestamps, ownership, file-access permissions, and directory organization. POSIX abandoned tar in favor of pax, yet tar sees continued widespread use.

In computing, a symbolic link is a file whose purpose is to point to a file or directory by specifying a path thereto.

A rootkit is a collection of computer software, typically malicious, designed to enable access to a computer or an area of its software that is not otherwise allowed and often masks its existence or the existence of other software. The term rootkit is a compound of "root" and the word "kit". The term "rootkit" has negative connotations through its association with malware.

Unix security refers to the means of securing a Unix or Unix-like operating system. A secure environment is achieved not only by the design concepts of these operating systems, but also through vigilant user and administrative practices.

ln (Unix) Unix file management utility

The ln command is a standard Unix command utility used to create a hard link or a symbolic link (symlink) to an existing file or directory. The use of a hard link allows multiple filenames to be associated with the same file since a hard link points to the inode of a given file, the data of which is stored on disk. On the other hand, symbolic links are special files that refer to other files by name.

passwd Tool to change passwords on Unix-like OSes

passwd is a command on Unix, Plan 9, Inferno, and most Unix-like operating systems used to change a user's password. The password entered by the user is run through a key derivation function to create a hashed version of the new password, which is saved. Only the hashed version is stored; the entered password is not saved for security reasons.

The Security Account Manager (SAM) is a database file in Windows XP, Windows Vista, Windows 7, 8.1, 10 and 11 that stores users' passwords. It can be used to authenticate local and remote users. Beginning with Windows 2000 SP4, Active Directory authenticates remote users. SAM uses cryptographic measures to prevent unauthenticated users accessing the system.

In computing, a named pipe is an extension to the traditional pipe concept on Unix and Unix-like systems, and is one of the methods of inter-process communication (IPC). The concept is also found in OS/2 and Microsoft Windows, although the semantics differ substantially. A traditional pipe is "unnamed" and lasts only as long as the process. A named pipe, however, can last as long as the system is up, beyond the life of the process. It can be deleted if no longer used. Usually a named pipe appears as a file, and generally processes attach to it for IPC.

sudo Command on Unix systems to temporarily assume root privileges

sudo is a program for Unix-like computer operating systems that enables users to run programs with the security privileges of another user, by default the superuser. It originally stood for "superuser do", as that was all it did, and it is its most common usage; however, the official Sudo project page lists it as "su 'do'". The current Linux manual pages for su define it as "substitute user", making the correct meaning of sudo "substitute user, do", because sudo can run a command as other users as well.

The Unix and Linux access rights flags setuid and setgid allow users to run an executable with the file system permissions of the executable's owner or group respectively and to change behaviour in directories. They are often used to allow users on a computer system to run programs with temporarily elevated privileges to perform a specific task. While the assumed user id or group id privileges provided are not always elevated, at a minimum they are specific.

The seven standard Unix file types are regular, directory, symbolic link, FIFO special, block special, character special, and socket as defined by POSIX. Different OS-specific implementations allow more types than what POSIX requires. A file's type can be identified by the ls -l command, which displays the type in the first character of the file-system permissions field.

In Unix-like and some other operating systems, find is a command-line utility that locates files based on some user-specified criteria and either prints the pathname of each matched object or, if another action is requested, performs that action on each matched object.

In computing, privilege is defined as the delegation of authority to perform security-relevant functions on a computer system. A privilege allows a user to perform an action with security consequences. Examples of various privileges include the ability to create a new user, install software, or change kernel functions.

In computing, a temporary folder or temporary directory is a directory used to hold temporary files. Many operating systems and some software automatically delete the contents of this directory at bootup or at regular intervals, leaving the directory itself intact.

A directory traversal attack exploits insufficient security validation or sanitization of user-supplied file names, such that characters representing "traverse to parent directory" are passed through to the operating system's file system API. An affected application can be exploited to gain unauthorized access to the file system.

The NTFS file system defines various ways to redirect files and folders, e.g., to make a file point to another file or its contents without making a copy of it. The object being pointed to is called the target. Such file is called a hard or symbolic link depending on a way it's stored on the filesystem.

A number of computer operating systems employ security features to help prevent malicious software from gaining sufficient privileges to compromise the computer system. Operating systems lacking such features, such as DOS, Windows implementations prior to Windows NT, CP/M-80, and all Mac operating systems prior to Mac OS X, had only one category of user who was allowed to do anything. With separate execution contexts it is possible for multiple users to store private files, for multiple users to use a computer at the same time, to protect the system against malicious users, and to protect the system against malicious programs. The first multi-user secure system was Multics, which began development in the 1960s; it wasn't until UNIX, BSD, Linux, and NT in the late 80s and early 90s that multi-tasking security contexts were brought to x86 consumer machines.

<span class="mw-page-title-main">System Integrity Protection</span> Security feature by Apple

System Integrity Protection is a security feature of Apple's macOS operating system introduced in OS X El Capitan (2015). It comprises a number of mechanisms that are enforced by the kernel. A centerpiece is the protection of system-owned files and directories against modifications by processes without a specific "entitlement", even when executed by the root user or a user with root privileges (sudo).

References

  1. "CAPEC-27: Leveraging Race Conditions via Symbolic Links". CAPEC.
  2. "Symlink race bugs discovered in 28 antivirus products". ZDNet .