C standard library

Last updated

The C standard library, sometimes referred to as libc,[ citation needed ] is the standard library for the C programming language, as specified in the ISO C standard. [1] Starting from the original ANSI C standard, it was developed at the same time as the C library POSIX specification, which is a superset of it. [2] [3] Since ANSI C was adopted by the International Organization for Standardization, [4] the C standard library is also called the ISO C library.[ citation needed ]

Contents

The C standard library provides macros, type definitions and functions for tasks such as string manipulation, mathematical computation, input/output processing, memory management, and input/output.

Application programming interface (API)

Header files

The application programming interface (API) of the C standard library is declared in a number of header files. Each header file contains one or more function declarations, data type definitions, and macros.

After a long period of stability, three new header files (iso646.h, wchar.h, and wctype.h) were added with Normative Addendum 1 (NA1), an addition to the C Standard ratified in 1995. Six more header files (complex.h, fenv.h, inttypes.h, stdbool.h, stdint.h, and tgmath.h) were added with C99, a revision to the C Standard published in 1999, and five more files (stdalign.h, stdatomic.h, stdnoreturn.h, threads.h, and uchar.h) with C11 in 2011. In total, there are now 29 header files:

NameFromDescription
<assert.h> Declares the assert macro, used to assist with detecting logical errors and other types of bugs while debugging a program.
<complex.h> C99Defines a set of functions for manipulating complex numbers.
<ctype.h> Defines set of functions used to classify characters by their types or to convert between upper and lower case in a way that is independent of the used character set (typically ASCII or one of its extensions, although implementations utilizing EBCDIC are also known).
<errno.h> For testing error codes reported by library functions.
<fenv.h> C99Defines a set of functions for controlling floating-point environment.
<float.h> Defines macro constants specifying the implementation-specific properties of the floating-point library.
<inttypes.h> C99Defines exact-width integer types.
<iso646.h> NA1Defines several macros that implement alternative ways to express several standard tokens. For programming in ISO 646 variant character sets.
<limits.h> Defines macro constants specifying the implementation-specific properties of the integer types.
<locale.h>Defines localization functions.
<math.h> Defines common mathematical functions.
<setjmp.h> Declares the macros setjmp and longjmp, which are used for non-local exits.
<signal.h> Defines signal-handling functions.
<stdalign.h>C11For querying and specifying the alignment of objects.
<stdarg.h> For accessing a varying number of arguments passed to functions.
<stdatomic.h>C11For atomic operations on data shared between threads.
<stdbool.h> C99Defines a Boolean data type.
<stddef.h> Defines several useful types and macros.
<stdint.h> C99Defines exact-width integer types.
<stdio.h> Defines core input and output functions
<stdlib.h>Defines numeric conversion functions, pseudo-random numbers generation functions, memory allocation, process control functions
<stdnoreturn.h>C11For specifying non-returning functions
<string.h> Defines string-handling functions
<tgmath.h> C99Defines type-generic mathematical functions.
<threads.h>C11Defines functions for managing multiple threads, mutexes and condition variables
<time.h> Defines date- and time-handling functions
<uchar.h>C11Types and functions for manipulating Unicode characters
<wchar.h> NA1Defines wide-string-handling functions
<wctype.h> NA1Defines set of functions used to classify wide characters by their types or to convert between upper and lower case

Three of the header files (complex.h, stdatomic.h, and threads.h) are conditional features that implementations are not required to support.

The POSIX standard added several nonstandard C headers for Unix-specific functionality. Many have found their way to other architectures. Examples include fcntl.h and unistd.h . A number of other groups are using other nonstandard headers – the GNU C Library has alloca.h, and OpenVMS has the va_count() function.

Documentation

On Unix-like systems, the authoritative documentation of the API is provided in the form of man pages. On most systems, man pages on standard library functions are in section 3; section 7 may contain some more generic pages on underlying concepts (e.g. man 7 math_error in Linux).

Implementations

Unix-like systems typically have a C library in shared library form, but the header files (and compiler toolchain) may be absent from an installation so C development may not be possible. The C library is considered part of the operating system on Unix-like systems; in addition to functions specified by the C standard, it includes other functions that are part of the operating system API, such as functions specified in the POSIX standard. The C library functions, including the ISO C standard ones, are widely used by programs, and are regarded as if they were not only an implementation of something in the C language, but also de facto part of the operating system interface. Unix-like operating systems generally cannot function if the C library is erased. This is true for applications which are dynamically as opposed to statically linked. Further, the kernel itself (at least in the case of Linux) operates independently of any libraries.

On Microsoft Windows, the core system dynamic libraries (DLLs) provide an implementation of the C standard library for the Microsoft Visual C++ compiler v6.0; the C standard library for newer versions of the Microsoft Visual C++ compiler is provided by each compiler individually, as well as redistributable packages. Compiled applications written in C are either statically linked with a C library, or linked to a dynamic version of the library that is shipped with these applications, rather than relied upon to be present on the targeted systems. Functions in a compiler's C library are not regarded as interfaces to Microsoft Windows.

Many C library implementations exist, provided with both various operating systems and C compilers. Some of the popular implementations are the following:

Compiler built-in functions

Some compilers (for example, GCC [7] ) provide built-in versions of many of the functions in the C standard library; that is, the implementations of the functions are written into the compiled object file, and the program calls the built-in versions instead of the functions in the C library shared object file. This reduces function-call overhead, especially if function calls are replaced with inline variants, and allows other forms of optimization (as the compiler knows the control-flow characteristics of the built-in variants), but may cause confusion when debugging (for example, the built-in versions cannot be replaced with instrumented variants).

However, the built-in functions must behave like ordinary functions in accordance with ISO C. The main implication is that the program must be able to create a pointer to these functions by taking their address, and invoke the function by means of that pointer. If two pointers to the same function are derived in two different translation units in the program, these two pointers must compare equal; that is, the address comes by resolving the name of the function, which has external (program-wide) linkage.

Linking, libm

Under FreeBSD [8] and glibc, [9] some functions such as sin() are not linked in by default and are instead bundled in the mathematical library libm. If any of them are used, the linker must be given the directive -lm. POSIX requires that the c99 compiler supports -lm, and that the functions declared in the headers math.h, complex.h, and fenv.h are available for linking if -lm is specified, but does not specify if the functions are linked by default. [10] musl satisfies this requirement by putting everything into a single libc library and providing an empty libm. [11]

Detection

According to the C standard the macro __STDC_HOSTED__ shall be defined to 1 if the implementation is hosted. A hosted implementation has all the headers specified by the C standard. An implementation can also be freestanding which means that these headers will not be present. If an implementation is freestanding, it shall define __STDC_HOSTED__ to 0.

Problems and workarounds

Buffer overflow vulnerabilities

Some functions in the C standard library have been notorious for having buffer overflow vulnerabilities and generally encouraging buggy programming ever since their adoption. [a] The most criticized items are:

Except the extreme case with gets(), all the security vulnerabilities can be avoided by introducing auxiliary code to perform memory management, bounds checking, input checking, etc. This is often done in the form of wrappers that make standard library functions safer and easier to use. This dates back to as early as The Practice of Programming book by B. Kernighan and R. Pike where the authors commonly use wrappers that print error messages and quit the program if an error occurs.

The ISO C committee published Technical reports TR 24731-1 [12] and is working on TR 24731-2 [13] to propose adoption of some functions with bounds checking and automatic buffer allocation, correspondingly. The former has met severe criticism with some praise, [14] [15] and the latter saw mixed response.

Despite concerns, TR 24731-1 was integrated into the C standards track in ISO/IEC 9899:2011 (C11), Annex K (Bounds-checking interfaces), and implemented approximately in Microsoft’s C/++ runtime (CRT) library for the Win32 and Win64 platforms.

(By default, Microsoft Visual Studio’s C and C++ compilers issue warnings when using older, "insecure" functions. However, Microsoft’s implementation of TR 24731-1 is subtly incompatible with both TR 24731-1 and Annex K, [16] so it’s common for portable projects to disable or ignore these warnings. They can be disabled directly by issuing

#pragma warning(disable : 4996)

before/around the call site[s] in question, or indirectly by issuing

#define _CRT_SECURE_NO_WARNINGS 1

before including any headers. [17] Command-line option /D_CRT_NO_SECURE_WARNINGS=1 should have the same effect as this #define.)

Threading problems, vulnerability to race conditions

The strerror() routine is criticized for being thread unsafe and otherwise vulnerable to race conditions.

Error handling

The error handling of the functions in the C standard library is not consistent and sometimes confusing. According to the Linux manual page math_error, "The current (version 2.8) situation under glibc is messy. Most (but not all) functions raise exceptions on errors. Some also set errno. A few functions set errno, but do not raise an exception. A very few functions do neither." [18]

Standardization

The original C language provided no built-in functions such as I/O operations, unlike traditional languages such as COBOL and Fortran.[ citation needed ] Over time, user communities of C shared ideas and implementations of what is now called C standard libraries. Many of these ideas were incorporated eventually into the definition of the standardized C language.

Both Unix and C were created at AT&T's Bell Laboratories in the late 1960s and early 1970s. During the 1970s the C language became increasingly popular. Many universities and organizations began creating their own variants of the language for their own projects. By the beginning of the 1980s compatibility problems between the various C implementations became apparent. In 1983 the American National Standards Institute (ANSI) formed a committee to establish a standard specification of C known as "ANSI C". This work culminated in the creation of the so-called C89 standard in 1989. Part of the resulting standard was a set of software libraries called the ANSI C standard library.

POSIX standard library

POSIX, as well as SUS, specify a number of routines that should be available over and above those in the basic C standard library. The POSIX specification includes header files for, among other uses, multi-threading, networking, and regular expressions. These are often implemented alongside the C standard library functionality, with varying degrees of closeness. For example, glibc implements functions such as fork within libc.so, but before NPTL was merged into glibc it constituted a separate library with its own linker flag argument. Often, this POSIX-specified functionality will be regarded as part of the library; the basic C library may be identified as the ANSI or ISO C library.

BSD libc

BSD libc is a superset of the POSIX standard library supported by the C libraries included with BSD operating systems such as FreeBSD, NetBSD, OpenBSD and macOS. BSD libc has some extensions that are not defined in the original standard, many of which first appeared in 1994's 4.4BSD release (the first to be largely developed after the first standard was issued in 1989). Some of the extensions of BSD libc are:

The C standard library in other languages

Some languages include the functionality of the standard C library in their own libraries. The library may be adapted to better suit the language's structure, but the operational semantics are kept similar.

C++

The C++ language incorporates the majority of the C standard library’s constructs into its own, excluding C-specific machinery. C standard library functions are exported from the C++ standard library in two ways.

For backwards-/cross-compatibility to C and pre-Standard C++, functions can be accessed in the global namespace (::), after #includeing the C standard header name as in C. [40] Thus, the C++98 program

#include<stdio.h>intmain(){return::puts("Hello, world!")==EOF;}

should exhibit (apparently-)identical behavior to C95 program

#include<stdio.h>intmain(void){returnputs("Hello, world!")==EOF;}

From C++98 on, C functions are also made available in namespace ::std (e.g., C printf as C++ ::std::printf, atoi as ::std::atoi, feof as ::std::feof), by including header <chdrname> instead of corresponding C header <hdrname.h>. E.g., <cstdio> substitutes for <stdio.h> and <cmath> for <math.h>; note lack of .h extension on C++ header names.

Thus, an equivalent (generally preferable) C++≥98 program to the above two is:

#include<cstdio>intmain(){returnstd::puts("Hello, world")==EOF;}

A usingnamespace::std declaration above or within main can be issued to apply the ::std:: prefix automatically, although it’s generally considered poor practice to use it globally in headers because it pollutes the global namespace. [41]

A few of the C++≥98 versions of C’s headers are missing; e.g., C≥11 <stdnoreturn.h> and <threads.h> have no C++ counterparts. [42]

Others are reduced to placeholders, such as (until C++20) <ciso646> for C95 <iso646.h>, all of whose requisite macros are rendered as keywords in C++98. C-specific syntactic constructs aren’t generally supported, even if their header is. [43]

Several C headers exist primarily for C++ compatibility, and these tend to be near-empty in C++. For example, C9917 <stdbool.h> require only

#define bool _Bool#define false 0#define true 1#define __bool_true_false_are_defined 1

in order to feign support for the C++98 bool, false, and true keywords in C. C++11 requires <stdbool.h> and <cstdbool> for compatibility, but all they need to define is __bool_true_false_are_defined. C23 obsoletes older _Bool keyword in favor of new, C++98-equivalent bool, false, and true keywords, so the C≥23 and C++≥11 <stdbool.h>/<cstdbool> headers are fully equivalent. (In particular, C23 doesn’t require any __STDC_VERSION_BOOL_H__ macro for <stdbool.h>.)

Access to C library functions via namespace ::std and the C++≥98 header names is preferred where possible. To encourage adoption, C++98 obsoletes the C (*.h) header names, so it’s possible that use of C compatibility headers will cause an especially strict C++98–20 preprocessor to raise a diagnostic of some sort. However, C++23 (unusually) de-obsoletes these headers, so newer C++ implementations/modes shouldn’t complain without being asked to specifically. [44]

Other languages take a similar approach, placing C compatibility functions/routines under a common namespace; these include D, Perl, and Ruby.

Python

CPython includes wrappers for some of the C library functions in its own common library, and it also grants more direct access to C functions and variables via its ctypes package. [45]

More generally, Python 2.x specifies the built-in file objects as being “implemented using C's stdio package [46] ,” and frequent reference is made to C standard library behaviors; the available operations (open, read, write, etc.) are expected to have the same behavior as the corresponding C functions (fopen, fread, fwrite, etc.).

Python 3’s specification relies considerably less on C specifics than Python 2, however.

Rust

Rust offers crate libc, which allows various C standard (and other) library functions and type definitions to be used. [47]

Comparison to standard libraries of other languages

The C standard library is small compared to the standard libraries of some other languages. The C library provides a basic set of mathematical functions, string manipulation, type conversions, and file and console-based I/O. It does not include a standard set of "container types" like the C++ Standard Template Library, let alone the complete graphical user interface (GUI) toolkits, networking tools, and profusion of other functionality that Java and the .NET Framework provide as standard. The main advantage of the small standard library is that providing a working ISO C environment is much easier than it is with other languages, and consequently porting C to a new platform is comparatively easy.

See also

Notes

  1. Morris worm that takes advantage of the well-known vulnerability in gets() have been created as early as in 1988.
  2. in C standard library, string length calculation and looking for a string's end have linear time complexities and are inefficient when used on the same or related strings repeatedly

Related Research Articles

ANSI C, ISO C, and Standard C are successive standards for the C programming language published by the American National Standards Institute (ANSI) and ISO/IEC JTC 1/SC 22/WG 14 of the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC). Historically, the names referred specifically to the original and best-supported version of the standard. Software developers writing in C are encouraged to conform to the standards, as doing so helps portability between compilers.

C is a general-purpose programming language. It was created in the 1970s by Dennis Ritchie and remains very widely used and influential. By design, C's features cleanly reflect the capabilities of the targeted CPUs. It has found lasting use in operating systems code, device drivers, and protocol stacks, but its use in application software has been decreasing. C is commonly used on computer architectures that range from the largest supercomputers to the smallest microcontrollers and embedded systems.

The Portable Operating System Interface is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems. POSIX defines system and user-level application programming interfaces (APIs), along with command line shells and utility interfaces, for software compatibility (portability) with variants of Unix and other operating systems. POSIX is also a trademark of the IEEE. POSIX is intended to be used by both application and system developers.

The C programming language provides many standard library functions for file input and output. These functions make up the bulk of the C standard library header <stdio.h>. The functionality descends from a "portable I/O package" written by Mike Lesk at Bell Labs in the early 1970s, and officially became part of the Unix operating system in Version 7.

In the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself.

C dynamic memory allocation refers to performing manual memory management for dynamic memory allocation in the C programming language via a group of functions in the C standard library, namely malloc, realloc, calloc, aligned_alloc and free.

errno.h is a header file in the standard library of the C programming language. It defines macros for reporting and retrieving error conditions using the symbol errno.

printf is a C standard library function that formats text and writes it to standard output.

<span class="mw-page-title-main">C99</span> C programming language standard, 1999 revision

C99 is a past version of the C programming language open standard. It extends the previous version (C90) with new features for the language and the standard library, and helps implementations make better use of available computer hardware, such as IEEE 754-1985 floating-point arithmetic, and compiler technology. The C11 version of the C programming language standard, published in 2011, updates C99.

In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time. Each flow of work is referred to as a thread, and creation and control over these flows is achieved by making calls to the POSIX Threads API. POSIX Threads is an API defined by the Institute of Electrical and Electronics Engineers (IEEE) standard POSIX.1c, Threads extensions .

In the C programming language, data types constitute the semantics and characteristics of storage of data elements. They are expressed in the language syntax in form of declarations for memory locations or variables. Data types also determine the types of operations or methods of processing of data elements.

C++ Technical Report 1 (TR1) is the common name for ISO/IEC TR 19768, C++ Library Extensions, which is a document that proposed additions to the C++ standard library for the C++03 language standard. The additions include regular expressions, smart pointers, hash tables, and random number generators. TR1 was not a standard itself, but rather a draft document. However, most of its proposals became part of the later official standard, C++11. Before C++11 was standardized, vendors used this document as a guide to create extensions. The report's goal was "to build more widespread existing practice for an expanded C++ standard library".

C mathematical operations are a group of functions in the standard library of the C programming language implementing basic mathematical functions. All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions. Most of these functions are also available in the C++ standard library, though in different headers.

The C and C++ programming languages are closely related but have many significant differences. C++ began as a fork of an early, pre-standardized C, and was designed to be mostly source-and-link compatible with C compilers of the time. Due to this, development tools for the two languages are often integrated into a single product, with the programmer able to specify C or C++ as their source language.

stdarg.h is a header in the C standard library of the C programming language that allows functions to accept an indefinite number of arguments. It provides facilities for stepping through a list of function arguments of unknown number and type. C++ provides this functionality in the header cstdarg.

C11, is a past standard for the C programming language. It replaced C99 and has been superseded by C17. C11 mainly standardizes features already supported by common contemporary compilers, and includes a detailed memory model to better support multiple threads of execution. Due to delayed availability of conforming C99 implementations, C11 makes certain features optional, to make it easier to comply with the core language standard.

Getopt is a C library function used to parse command-line options of the Unix/POSIX style. It is a part of the POSIX specification, and is universal to Unix-like systems. It is also the name of a Unix program for parsing command line arguments in shell scripts.

Bionic is an implementation of the C standard library, developed by Google for its Android operating system. It differs from the GNU C Library (glibc) in being designed for devices with less memory and processor power than a typical Linux system. It is a combination of new code and code from FreeBSD, NetBSD, and OpenBSD released under a BSD license, rather than glibc, which uses the GNU Lesser General Public License. This difference was important in the early days of Android, when static linking was common, and since Bionic has its own application binary interface, it cannot be replaced by a different libc without breaking all existing apps.

The C programming language has a set of functions implementing operations on strings in its standard library. Various operations, such as copying, concatenation, tokenization and searching are supported. For character strings, the standard library uses the convention that strings are null-terminated: a string of n characters is represented as an array of n + 1 elements, the last of which is a "NUL character" with numeric value 0.

C++17 is a version of the ISO/IEC 14882 standard for the C++ programming language. C++17 replaced the prior version of the C++ standard, called C++14, and was later replaced by C++20.

References

  1. ISO/IEC (2018). ISO/IEC 9899:2018(E): Programming Languages - C §7
  2. "The GNU C Library – Introduction". gnu.org. Retrieved 2013-12-05.
  3. "Difference between C standard library and C POSIX library". stackoverflow.com. 2012. Retrieved 2015-03-04.
  4. "C Standards". C: C Standards. Keil. Retrieved 24 November 2011.
  5. "Re: Does Newlib support mmu-less CPUs?". Cygwin.com. 23 March 2006. Archived from the original on 22 November 2008. Retrieved 28 October 2011.
  6. "musl libc". Etalabs.net. Retrieved 28 October 2011.
  7. Other built-in functions provided by GCC, GCC Manual
  8. "Compiling with cc" . Retrieved 2013-03-02.
  9. Weimer, Florian. "c - What functions is the libm intended for?". Stack Overflow. Retrieved 24 February 2021.
  10. "c99 - compile standard C programs". The Open Group Base Specifications Issue 7, 2018 edition. The Open Group. Retrieved 24 February 2021.
  11. "musl FAQ". www.musl-libc.org. Retrieved 24 February 2021.
  12. "ISO/IEC TR 24731-1: Extensions to the C Library, Part I: Bounds-checking interfaces" (PDF). open-std.org. 2007-03-28. Retrieved 2014-03-13.
  13. "ISO/IEC WDTR 24731-2: Extensions to the C Library, Part II: Dynamic Allocation Functions" (PDF). open-std.org. 2008-08-10. Retrieved 2014-03-13.
  14. Do you use the TR 24731 'safe' functions in your C code? - Stack overflow
  15. "Austin Group Review of ISO/IEC WDTR 24731" . Retrieved 28 October 2011.
  16. "Field Experience With Annex K—Bounds Checking Interfaces" . Retrieved 9 October 2024.
  17. "Security Features in the CRT—Eliminating deprecation warnings". February 2023. Retrieved 9 October 2024.
  18. "math_error - detecting errors from mathematical functions". man7.org. 2008-08-11. Retrieved 2014-03-13.
  19. "tree". Man.freebsd.org. 2007-12-27. Retrieved 2013-08-25.
  20. "Super User's BSD Cross Reference: /OpenBSD/sys/sys/tree.h". bxr.su.
  21. "queue". Man.freebsd.org. 2011-05-13. Retrieved 2013-08-25.
  22. "Super User's BSD Cross Reference: /OpenBSD/sys/sys/queue.h". bxr.su.
  23. "fgetln". Man.freebsd.org. 1994-04-19. Retrieved 2013-08-25.
  24. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/stdio/fgetln.c". bxr.su.
  25. "Super User's BSD Cross Reference: /OpenBSD/include/stdio.h". bxr.su.
  26. "fts". Man.freebsd.org. 2012-03-18. Retrieved 2013-08-25.
  27. "Super User's BSD Cross Reference: /OpenBSD/include/fts.h". bxr.su.
  28. "db". Man.freebsd.org. 2010-09-10. Retrieved 2013-08-25.
  29. "Super User's BSD Cross Reference: /OpenBSD/include/db.h". bxr.su.
  30. Miller, Todd C. and Theo de Raadt. strlcpy and strlcat - consistent, safe, string copy and concatenation. Proceedings of the 1999 USENIX Annual Technical Conference, June 6–11, 1999, pp. 175–178.
  31. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/string/strlcat.c". bxr.su.
  32. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/string/strlcpy.c". bxr.su.
  33. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/string/strncat.c". bxr.su.
  34. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/string/strncpy.c". bxr.su.
  35. "err". Man.freebsd.org. 2012-03-29. Retrieved 2013-08-25.
  36. "Super User's BSD Cross Reference: /OpenBSD/include/err.h". bxr.su.
  37. "vis(3)". Man.FreeBSD.org. Retrieved 14 September 2013.
  38. "Super User's BSD Cross Reference: /OpenBSD/lib/libc/gen/vis.c". bxr.su.
  39. "Super User's BSD Cross Reference: /OpenBSD/include/vis.h". bxr.su.
  40. C++ Standard Library Headers—C compatibility headers , retrieved 9 October 2024
  41. Kieras, David (15 February 2015). "Using "using": How to use the std namespace" (PDF). EECS381 Handouts. EECS Department, University of Michigan. Archived (PDF) from the original on 2022-12-24. Retrieved 9 October 2024. A single using namespace std; statement in a single header file in a complex project can make a mess out of the namespace management for the whole project. So, no top level [using namespace] statements in a header file!
  42. "C++ Standard Library headers—Unsupported C headers" . Retrieved 9 October 2024.
  43. "C++ Standard Library headers—Meaningless C headers" . Retrieved 9 October 2024.
  44. "C++ Standard Library headers—C compatibility headers" . Retrieved 9 October 2024.
  45. "ctypes—A foreign function library for Python". docs.python.com. Retrieved 9 October 2024.
  46. "The Python Standard Library, §5.9: File Objects" . Retrieved 9 October 2024. File objects are implemented using C's stdio package and can be created with the built-in open() function.
  47. "Crate libc". Rust Crates. Retrieved 9 October 2024.

Further reading