Symmetry-breaking constraints

Last updated

In the field of mathematics called combinatorial optimization, the method of symmetry-breaking constraints can be used to take advantage of symmetries in many constraint satisfaction and optimization problems, by adding constraints that eliminate symmetries and reduce the search space size.

Symmetries in a combinatorial problem increase the size of the search space and therefore, time is wasted in visiting new solutions which are symmetric to the already visited solutions. The solution time of a combinatorial problem can be reduced by adding new constraints, referred as symmetry breaking constraints, such that some of the symmetric solutions are eliminated from the search space while preserving the existence of at least one solution. [1] [2]

Symmetry is common in many real-life combinatorial problems. For example, certain vehicles in the vehicle routing problem might be identical. For a valid routing plan, every permutation of such identical vehicles yields another valid routing plan with the same objective function value.

Related Research Articles

<span class="mw-page-title-main">Search algorithm</span> Any algorithm which solves the search problem

In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values.

<span class="mw-page-title-main">Travelling salesman problem</span> NP-hard problem in combinatorial optimization

The travelling salesman problem, also known as the travelling salesperson problem (TSP), asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.

<span class="mw-page-title-main">Genetic algorithm</span> Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection. Some examples of GA applications include optimizing decision trees for better performance, solving sudoku puzzles, hyperparameter optimization, causal inference, etc.

<span class="mw-page-title-main">Mathematical optimization</span> Study of mathematical algorithms for optimization problems

Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

<span class="mw-page-title-main">Greedy algorithm</span> Sequence of locally optimal choices

A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique and algorithmic paradigm that consists of systematically checking all possible candidates for whether or not each candidate satisfies the problem's statement.

Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to constraints, users also need to specify a method to solve these constraints. This typically draws upon standard methods like chronological backtracking and constraint propagation, but may use customized code like a problem-specific branching heuristic.

In computer science and artificial intelligence, combinatorial search studies search algorithms for solving instances of problems that are believed to be hard in general, by efficiently exploring the usually large solution space of these instances. Combinatorial search algorithms achieve this efficiency by reducing the effective size of the search space or employing heuristics. Some algorithms are guaranteed to find the optimal solution, while others may only return the best solution found in the part of the state space that was explored.

Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.

In computer science, local search is a heuristic method for solving computationally hard optimization problems. Local search can be used on problems that can be formulated as finding a solution maximizing a criterion among a number of candidate solutions. Local search algorithms move from solution to solution in the space of candidate solutions by applying local changes, until a solution deemed optimal is found or a time bound is elapsed.

<span class="mw-page-title-main">Combinatorial optimization</span> Subfield of mathematical optimization

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.

<span class="mw-page-title-main">Ant colony optimization algorithms</span> Optimization algorithm

In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Artificial ants stand for multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a method of choice for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing.

In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity. Metaheuristics sample a subset of solutions which is otherwise too large to be completely enumerated or otherwise explored. Metaheuristics may make relatively few assumptions about the optimization problem being solved and so may be usable for a variety of problems.

Automated planning and scheduling, sometimes denoted as simply AI planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.

<span class="mw-page-title-main">Pathfinding</span> Plotting by a computer application

Pathfinding or pathing is the plotting, by a computer application, of the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.

<span class="mw-page-title-main">Mathematics of Sudoku</span> Mathematical investigation of Sudoku

Mathematics can be used to study Sudoku puzzles to answer questions such as "How many filled Sudoku grids are there?", "What is the minimal number of clues in a valid puzzle?" and "In what ways can Sudoku grids be symmetric?" through the use of combinatorics and group theory.

<span class="mw-page-title-main">Vehicle routing problem</span> Optimization problem

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" It generalises the travelling salesman problem (TSP). It first appeared in a paper by George Dantzig and John Ramser in 1959, in which the first algorithmic approach was written and was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods. The objective of the VRP is to minimize the total route cost. In 1964, Clarke and Wright improved on Dantzig and Ramser's approach using an effective greedy algorithm called the savings algorithm.

<span class="mw-page-title-main">Sudoku solving algorithms</span> Algorithms to complete a sudoku

A standard Sudoku contains 81 cells, in a 9×9 grid, and has 9 boxes, each box being the intersection of the first, middle, or last 3 rows, and the first, middle, or last 3 columns. Each cell may contain a number from one to nine, and each number can only occur once in each row, column, and box. A Sudoku starts with some cells containing numbers (clues), and the goal is to solve the remaining cells. Proper Sudokus have one solution. Players and investigators use a wide range of computer algorithms to solve Sudokus, study their properties, and make new puzzles, including Sudokus with interesting symmetries and other properties.

In discrete mathematics, the social golfer problem (SGP) is a combinatorial-design problem derived from a question posted in the usenet newsgroup sci.op-research in May 1998. The problem is as follows: 32 golfers play golf once a week in groups of 4. Schedule these golfers to play for as many weeks as possible without any two golfers playing together in a group more than once.

References

  1. "Published key research papers on Symmetry Breaking Constraints".{{cite journal}}: Cite journal requires |journal= (help)
  2. Walsh, Toby (2006). "General Symmetry Breaking Constraints". Principles and Practice of Constraint Programming - CP 2006. Lecture Notes in Computer Science. Vol. Springer Berlin Heidelberg. pp. 650–664. CiteSeerX   10.1.1.131.2959 . doi:10.1007/11889205_46. ISBN   978-3-540-46267-5.{{cite book}}: |journal= ignored (help)