Synthetic ice

Last updated
Ice hockey team training on synthetic ice Synthetic ice rink.jpg
Ice hockey team training on synthetic ice

Synthetic ice is a solid polymer material designed for skating using normal metal-bladed ice skates. Rinks are constructed by interlocking panels. Synthetic ice is sometimes called artificial ice, but that term is ambiguous, as it is also used to mean the mechanically frozen skating surface created by freezing water with refrigeration equipment.

Contents

Synthetic ice is marketed under brand names including Glice, Xtraice, and PolyGlide Ice. [1]

History

The first known application of plastics as a substitute for ice for the purpose of ice skating was in the 1960s using materials such as polyoxymethylene plastic, which was developed by DuPont in the early 1950s. [2] The polymers used at the time had some significant shortcomings, the most obvious being that skaters could not glide on these surfaces as they can on real ice without the regular application of a silicone compound. The compound would build up on the surface, collecting dirt and grime.

In 1982, High Density Plastics launched the first full-size synthetic skating floor under the trade name of Hi Den Ice. [3] The surface was made of interlocking panels of high-density polyethylene which became an ice rink when sprayed with a gliding fluid. The surface needed to be cleaned off and resprayed once a month. In a dry form, the panels were also usable for other indoor sports. [4]

Research and development in the field of synthetic ice has improved its skating characteristics. Special polymer materials have been specifically engineered for skating and unique lubricants designed to work with the polymer and be absorbed by it so that the surface is less sticky and does not attract contaminants while providing an ice-like glide. Smoothness between panels at seams has been improved by ameliorations in production and assembly methods. It is estimated that synthetic ice has 90% of the glide factor of natural ice. [5]

In 2019, the world's largest synthetic ice rink opened in Zócalo Square in Mexico City. It spanned 43,000 square feet. [6]

Comparison with true ice

When skating on natural ice, the molecules in the microscopic top layer of the ice acts as a "quasi-fluid" that reduces drag and causes the blade to glide on top of the ice. [7] [8] [9] [10] [11] On synthetic ice rinks, liquid surface enhancements are common among synthetic ice products to further reduce drag on the skate blade over the artificial surface. However, most synthetic ice products allow skating without liquid.

Materials

A typical synthetic ice rink will consist of many panels (usually in typical building material sheet sizes) of thin surface material assembled on top of a sturdy, level and smooth sub-floor (anything from concrete to wood or even dirt or grass) to create a large skating area. The connection systems vary. A true commercial joint connection system can be installed virtually on any type of surface whereas the typical "dovetail" joint system requires a near perfect substrate to operate safely.

The most common material used is high-density polyethylene (HDPE), but recently[ when? ] ultra-high-molecular-weight polyethylene (UHMW-PE) is being used by some manufacturers. This new formula has the lowest coefficient levels of friction, at only 10% to 15% greater than real ice.

However, synthetics have not been able to fully duplicate the properties of real ice so far. First, more effort is required to skate. Although this side effect can be positive for resistance training, skaters report missing out on the fun of effortless skating. Second, most synthetic ice products still wear down the blade of a skate very quickly, with 30 minutes to 120 minutes the industry average. [12] Third, many synthetic rinks produce a large amount of shavings and abrasions – especially if the material is extruded sheet. Sinter-pressed material, on the other hand,[ clarification needed ] uses a much higher molecular weight resin and has a far better abrasion resistance, and therefore the shavings are greatly reduced. Surfaces have to be cleaned less often with the sinter-pressed material than with an extruded product, and the attractiveness of the rink is increased significantly.

Usage

Synthetic ice rinks are sometimes used where frozen ice surfaces are impractical due to temperatures making natural ice impossible. [13] Synthetic ice rinks are also used as an alternative to artificial ice rinks due to the overall cost, not requiring any refrigeration equipment. [14] For pleasure skating, rinks have been installed indoors at resorts and entertainment venues while newer installations are being made outdoors. For purposes of ice hockey, synthetic ice rinks are typically smaller, at about 50 feet (15 m) by 50 feet (15 m), and are used for specialized training, such as shooting or goalie training. [14]

Manufacturers

Synthetic ice manufacturers include European-based Glice and Xtraice, and Hauppauge, NY-based PolyGlide Ice. [1] [15]

Examples

See also

Related Research Articles

<span class="mw-page-title-main">Ice skating</span> Self-propulsion of a person over ice, wearing bladed skates

Ice skating is the self-propulsion and gliding of a person across an ice surface, using metal-bladed ice skates. People skate for various reasons, including recreation (fun), exercise, competitive sports, and commuting. Ice skating may be performed on naturally frozen bodies of water, such as ponds, lakes, canals, and rivers, and on human-made ice surfaces both indoors and outdoors.

<span class="mw-page-title-main">Kevlar</span> Heat-resistant and strong aromatic polyamide fiber

Kevlar (para-aramid) is a strong, heat-resistant synthetic fiber, related to other aramids such as Nomex and Technora. Developed by Stephanie Kwolek at DuPont in 1965, the high-strength material was first used commercially in the early 1970s as a replacement for steel in racing tires. It is typically spun into ropes or fabric sheets that can be used as such, or as an ingredient in composite material components.

<span class="mw-page-title-main">Ice skate</span> Boots with blades attached to the bottom for propelling the bearer across a sheet of ice

Ice skates are metal blades attached underfoot and used to propel the bearer across a sheet of ice while ice skating.

<span class="mw-page-title-main">Polyethylene</span> Most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Fiber</span> Natural or synthetic substance made of long, thin filaments

Fiber or fibre is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often incorporate fibers, for example carbon fiber and ultra-high-molecular-weight polyethylene.

<span class="mw-page-title-main">Poly(methyl methacrylate)</span> Transparent thermoplastic, commonly called acrylic

Poly(methyl methacrylate) (PMMA) is the synthetic polymer derived from methyl methacrylate. Being an engineering plastic, it is a transparent thermoplastic. PMMA is also known as acrylic, acrylic glass, as well as by the trade names and brands Crylux, Alfaplas, Plexiglas, Acrylite, Lucite, and Perspex, among several others. This plastic is often used in sheet form as a lightweight or shatter-resistant alternative to glass. It can also be used as a casting resin, in inks and coatings, and for many other purposes.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoft plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Figure skate</span>

Figure skates are a type of ice skate used by figure skaters. The skates consist of a boot and a blade that is attached with screws to the sole of the boot. Inexpensive sets for recreational skaters are available, but most figure skaters purchase boots and blades separately and have the blades mounted by a professional skate technician.

<span class="mw-page-title-main">Ski wax</span> Material for use on snow runners

Ski wax is a material applied to the bottom of snow runners, including skis, snowboards, and toboggans, to improve their coefficient of friction performance under varying snow conditions. The two main types of wax used on skis are glide waxes and grip waxes. They address kinetic friction—to be minimized with a glide wax—and static friction—to be achieved with a grip wax. Both types of wax are designed to be matched with the varying properties of snow, including crystal type and size, and moisture content of the snow surface, which vary with temperature and the temperature history of the snow. Glide wax is selected to minimize sliding friction for both alpine and cross-country skiing. Grip wax provides on-snow traction for cross-country skiers, as they stride forward using classic technique.

<span class="mw-page-title-main">Ice rink</span> Place for ice skating and sports

An ice rink is a frozen body of water and/or an artificial sheet of ice created using hardened chemicals where people can ice skate or play winter sports. Ice rinks are also used for exhibitions, contests and ice shows. The growth and increasing popularity of ice skating during the 1800s marked a rise in the deliberate construction of ice rinks in numerous areas of the world.

<span class="mw-page-title-main">Gábor A. Somorjai</span> American chemist

Gabor A. Somorjai is a professor of chemistry at the University of California, Berkeley, and is a leading researcher in the field of surface chemistry and catalysis, especially the catalytic effects of metal surfaces on gas-phase reactions. For his contributions to the field, Somorjai won the Wolf Prize in Chemistry in 1998, the Linus Pauling Award in 2000, the National Medal of Science in 2002, the Priestley Medal in 2008, the 2010 BBVA Foundation Frontiers of Knowledge Award in Basic Science and the NAS Award in Chemical Sciences in 2013. In April 2015, Somorjai was awarded the American Chemical Society's William H. Nichols Medal.

An artificial membrane, or synthetic membrane, is a synthetically created membrane which is usually intended for separation purposes in laboratory or in industry. Synthetic membranes have been successfully used for small and large-scale industrial processes since the middle of twentieth century. A wide variety of synthetic membranes is known. They can be produced from organic materials such as polymers and liquids, as well as inorganic materials. The most of commercially utilized synthetic membranes in separation industry are made of polymeric structures. They can be classified based on their surface chemistry, bulk structure, morphology, and production method. The chemical and physical properties of synthetic membranes and separated particles as well as a choice of driving force define a particular membrane separation process. The most commonly used driving forces of a membrane process in industry are pressure and concentration gradients. The respective membrane process is therefore known as filtration. Synthetic membranes utilized in a separation process can be of different geometry and of respective flow configuration. They can also be categorized based on their application and separation regime. The best known synthetic membrane separation processes include water purification, reverse osmosis, dehydrogenation of natural gas, removal of cell particles by microfiltration and ultrafiltration, removal of microorganisms from dairy products, and Dialysis.

<span class="mw-page-title-main">Low-density polyethylene</span> Chemical compound

Low-density polyethylene (LDPE) is a thermoplastic made from the monomer ethylene. It was the first grade of polyethylene, produced in 1933 by Imperial Chemical Industries (ICI) using a high pressure process via free radical polymerization. Its manufacture employs the same method today. The EPA estimates 5.7% of LDPE is recycled in the United States. Despite competition from more modern polymers, LDPE continues to be an important plastic grade. In 2013 the worldwide LDPE market reached a volume of about US$33 billion.

Ultra-high-molecular-weight polyethylene is a subset of the thermoplastic polyethylene. Also known as high-modulus polyethylene, (HMPE),(colloquial: Umpeewumpee), ( it has extremely long chains, with a molecular mass usually between 3.5 and 7.5 million amu. The longer chain serves to transfer load more effectively to the polymer backbone by strengthening intermolecular interactions. This results in a very tough material, with the highest impact strength of any thermoplastic presently made.

A polyolefin is a type of polymer with the general formula (CH2CHR)n where R is an alkyl group. They are usually derived from a small set of simple olefins (alkenes). Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polyisobutylene and polymethylpentene. They are all colorless or white oils or solids. Many copolymers are known, such as polybutene, which derives from a mixture of different butene isomers. The name of each polyolefin indicates the olefin from which it is prepared; for example, polyethylene is derived from ethylene, and polymethylpentene is derived from 4-methyl-1-pentene. Polyolefins are not olefins themselves because the double bond of each olefin monomer is opened in order to form the polymer. Monomers having more than one double bond such as butadiene and isoprene yield polymers that contain double bonds (polybutadiene and polyisoprene) and are usually not considered polyolefins. Polyolefins are the foundations of many chemical industries.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

<span class="mw-page-title-main">Environmental stress cracking</span> Brittle failure of thermoplastic polymers

Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic polymers known at present. According to ASTM D883, stress cracking is defined as "an external or internal crack in a plastic caused by tensile stresses less than its short-term mechanical strength". This type of cracking typically involves brittle cracking, with little or no ductile drawing of the material from its adjacent failure surfaces. Environmental stress cracking may account for around 15-30% of all plastic component failures in service. This behavior is especially prevalent in glassy, amorphous thermoplastics. Amorphous polymers exhibit ESC because of their loose structure which makes it easier for the fluid to permeate into the polymer. Amorphous polymers are more prone to ESC at temperature higher than their glass transition temperature (Tg) due to the increased free volume. When Tg is approached, more fluid can permeate into the polymer chains.

<span class="mw-page-title-main">Plastic</span> Material of a wide range of synthetic or semi-synthetic organic solids

Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptability, plus a wide range of other properties, such as being lightweight, durable, flexible, and inexpensive to produce, has led to its widespread use. Plastics typically are made through human industrial systems. Most modern plastics are derived from fossil fuel-based chemicals like natural gas or petroleum; however, recent industrial methods use variants made from renewable materials, such as corn or cotton derivatives.

Biodegradable additives are additives that enhance the biodegradation of polymers by allowing microorganisms to utilize the carbon within the polymer chain as a source of energy. Biodegradable additives attract microorganisms to the polymer through quorum sensing after biofilm creation on the plastic product. Additives are generally in masterbatch formation that use carrier resins such as polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET).

References

  1. 1 2 "Ice Skating in July on Synthetic Ice". Interesting Engineering. 2020-02-05. Retrieved 2020-02-10.
  2. Joseph P. Kennedy; Wayne H. Watkins (31 July 2012). How to Invent and Protect Your Invention: A Guide to Patents for Scientists and Engineers. John Wiley & Sons. pp. 194–. ISBN   978-1-118-41009-7.
  3. "Synthetic Ice Rink Specifications" Archived 2013-08-23 at the Wayback Machine noiceone.com
  4. Chandas & Roy 2007, p. 7-46.
  5. Akovali 2007, p. 178.
  6. "The World's Largest Eco-Skating Rink Opens for the Holidays in Mexico City". PRN Newswire. Retrieved 2022-06-28.
  7. Chang, Kenneth (21 February 2006). "Explaining Ice: The Answers Are Slippery". The New York Times . Archived from the original on 11 December 2008.
  8. Somorjai, G.A. (10 June 1997). "Molecular surface structure of ice(0001): dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations". Surface Science. 381 (2–3): 190–210. Bibcode:1997SurSc.381..190M. doi:10.1016/S0039-6028(97)00090-3. Most studies so far were performed at temperatures well above 240 K (−33 °C) and report the presence of a liquid or quasiliquid layer on ice. Those studies that went below this temperature do not suggest a liquid-like layer.
  9. Roth, Mark (23 December 2012). "Pitt physics professor explains the science of skating across the ice". Pittsburgh Post-Gazette . Archived from the original on 15 July 2021. Retrieved 15 July 2021. It used to be thought ... that the reason skaters can glide gracefully across the ice is because the pressure they exert on the sharp blades creates a thin layer of liquid on top of the ice... More recent research has shown, though, that this property isn't why skaters can slide on the ice... It turns out that at the very surface of the ice, water molecules exist in a state somewhere between a pure liquid and a pure solid. It's not exactly water – but it's like water. The atoms in this layer are 100,000 times more mobile than the atoms [deeper] in the ice, but they're still 25 times less mobile than atoms in water. So it's like proto-water, and that's what we're really skimming on.
  10. "Slippery All the Time". Exploratorium. Archived from the original on 19 July 2012. Professor Somorjai's findings indicate that ice itself is slippery. You don't need to melt the ice to skate on it, or need a layer of water as a lubricant to help slide along the ice... the "quasi-fluid" or "water-like" layer exists on the surface of the ice and may be thicker or thinner depending on temperature. At about 250 degrees below zero Fahrenheit (−157 °C), the ice has a slippery layer one molecule thick. As the ice is warmed, the number of these slippery layers increases.
  11. Science News Staff (9 December 1996). "Getting a Grip on Ice". Science NOW. Archived from the original on 2 December 2022. Retrieved 30 June 2022.
  12. John, Geraint; Campbell, Kit (1996). Swimming Pools and Ice Rinks. Architectural Press. p. 242.
  13. "Beer League Hockey". Beer League Hockey.
  14. 1 2 "'New Generation' of Synthetic Ice Gains Popularity". Commercial Property News. August 7, 2008.
  15. "On Roofs or in Basements, a New Way to Ice Skate". The NY Times. 2020-02-01. Retrieved 2020-02-10.
  16. Petkewich, Rachel (February 16, 2009). "Synthetic Ice Rinks, Historic Hot Cocoa". Newscripts. Chemical & Engineering News. 87 (7): 64. doi:10.1021/cen-v087n007.p064.
  17. "Luxury Hotels Europe, Middle East & Far East". Jumeirah. Retrieved 2019-06-18.
  18. "Power Kart Raceway". www.powerkarts.com.au. Retrieved 2019-06-18.
  19. "Synthetic Ice Rinks". Public Works. 131 (12): 44. 2000.
  20. "Marina Bay Sands replaces ice skating rink with new digital art exhibit". Straits Times . 22 December 2017.
  21. "Fukuoka Now City Bulletin Dec. 2011" . Retrieved 11 December 2012.
  22. "Parson's Skating Rink is Back, but There's One Big Difference - Logan Square - DNAinfo.com Chicago". Archived from the original on 2015-11-26. Retrieved 2015-11-26.
  23. "Ice rink to open in St George's | the Royal Gazette:Bermuda News". 5 October 2016.
  24. "BAYSHORE SHOPPING CENTRE | Ottawa's Favourite Mall".
  25. Facebook
  26. Velocity World. Doha, Qatar. Video: https://www.facebook.com/plugins/video.php?href=https%3A%2F%2Fwww.facebook.com%2Fvelocityworldqatar%2Fvideos%2F300687333726376%2F&show_text=0&width=269.
  27. Artificial Skating Rink Winter Glow 2019 (Bruges, Belgium) video: https://www.facebook.com/watch/?v=1023981064661363.
  28. Artificial Skating Rink Winter Glow 2019 (Bruges, Belgium) video: https://www.youtube.com/watch?v=jOLpgIagIvo.