Synthetic rescue

Last updated

Synthetic rescue (or synthetic recovery or synthetic viability when a lethal phenotype is rescued [1] [2] ) refers to a genetic interaction in which a cell that is nonviable, sensitive to a specific drug, or otherwise impaired due to the presence of a genetic mutation becomes viable when the original mutation is combined with a second mutation in a different gene. [1] The second mutation can either be a loss-of-function mutation (equivalent to a knockout) or a gain-of-function mutation. [2]

Contents

Synthetic rescue could potentially be exploited for gene therapy, but it also provides information on the function of the genes involved in the interaction.

Types of genetic suppression

Dosage-mediated suppression

Dosage-mediated suppression occurs when the suppression of the mutant phenotype is mediated by the over expression of a second suppressor gene. This can occur when the initial mutations destabilize a protein-protein interaction and over expression of the interacting protein bypass the negative effect of the initial mutation.

Interaction-mediated suppression

Interaction-mediated suppression occurs when a deleterious mutation in a component of a protein complex destabilizes the complex. A compensatory mutation in another component of the protein complex can then suppress the deleterious phenotype by re-establishing the interaction between the two proteins. It usually means that the deleterious mutation and the suppressive mutation occurs in two residues that are closely located in the tridimensional structure of the multi-protein complex. As thus, this kind of suppression provides indirect information on the molecular structure of the proteins involved.

Experimental observation of theoretical prediction

The strongest form of synthetic rescues, in which the deleterious impact of a gene knockout is mitigated by an additional genetic perturbation that is also deleterious when considered in isolation, was modeled and predicted theoretically for gene interactions mediated by the metabolic network. [1] This strong form of synthetic rescue has been recently observed in experiments in both Saccharomyces cerevisiae . [3] and Escherichia coli . [4] Patient survival analysis was also shown to predict synthetic rescues and other types of interactions. [5]

tRNA-mediated suppression

Genetic suppression can be mediated by tRNA genes when a mutation alters their anticodon sequence. For example, a tRNA designated for the recognition of the codon TCA and the corresponding insertion of serine in the growing polypeptide chain can mutate so that it recognize a TAA stop codon and promote the insertion of serine instead of the termination of the polypeptide chain. This could be particularly useful when a nonsense mutation (TCA >TAA) prevents the expression of a gene by either leading to a partially completed polypeptide or degradation of the mRNA by nonsense-mediated decay. The redundancy of tRNA genes makes sure that such mutation would not prevent the normal insertion of serines when the TCA codon specifies them.

See also

Related Research Articles

<span class="mw-page-title-main">Genetic code</span> Rules by which information encoded within genetic material is translated into proteins

The genetic code is the set of rules used by living cells to translate information encoded within genetic material into proteins. Translation is accomplished by the ribosome, which links proteinogenic amino acids in an order specified by messenger RNA (mRNA), using transfer RNA (tRNA) molecules to carry amino acids and to read the mRNA three nucleotides at a time. The genetic code is highly similar among all organisms and can be expressed in a simple table with 64 entries.

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

<span class="mw-page-title-main">Protein biosynthesis</span> Assembly of proteins inside biological cells

Protein biosynthesis is a core biological process, occurring inside cells, balancing the loss of cellular proteins through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

Stop codon Codon that marks the end of a protein-coding sequence

In molecular biology, a stop codon is a codon that signals the termination of the translation process of the current protein. Most codons in messenger RNA correspond to the addition of an amino acid to a growing polypeptide chain, which may ultimately become a protein; stop codons signal the termination of this process by binding release factors, which cause the ribosomal subunits to disassociate, releasing the amino acid chain.

The coding region of a gene, also known as the coding sequence(CDS), is the portion of a gene's DNA or RNA that codes for protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene organization and evolution of prokaryotes and eukaryotes. This can further assist in mapping the human genome and developing gene therapy.

Frameshift mutation Mutation that shifts codon alignment

A frameshift mutation is a genetic mutation caused by indels of a number of nucleotides in a DNA sequence that is not divisible by three. Due to the triplet nature of gene expression by codons, the insertion or deletion can change the reading frame, resulting in a completely different translation from the original. The earlier in the sequence the deletion or insertion occurs, the more altered the protein. A frameshift mutation is not the same as a single-nucleotide polymorphism in which a nucleotide is replaced, rather than inserted or deleted. A frameshift mutation will in general cause the reading of the codons after the mutation to code for different amino acids. The frameshift mutation will also alter the first stop codon encountered in the sequence. The polypeptide being created could be abnormally short or abnormally long, and will most likely not be functional.

<span class="mw-page-title-main">Functional genomics</span> Field of molecular biology

Functional genomics is a field of molecular biology that attempts to describe gene functions and interactions. Functional genomics make use of the vast data generated by genomic and transcriptomic projects. Functional genomics focuses on the dynamic aspects such as gene transcription, translation, regulation of gene expression and protein–protein interactions, as opposed to the static aspects of the genomic information such as DNA sequence or structures. A key characteristic of functional genomics studies is their genome-wide approach to these questions, generally involving high-throughput methods rather than a more traditional "gene-by-gene" approach.

Sup35p is the Saccharomyces cerevisiae eukaryotic translation release factor. More specifically, it is the yeast eukaryotic release factor 3 (eRF3), which forms the translation termination complex with eRF1. This complex recognizes and catalyzes the release of the nascent polypeptide chain when the ribosome encounters a stop codon. While eRF1 recognizes stop codons, eRF3 facilitates the release of the polypeptide chain through GTP hydrolysis.

Silent mutation

Silent mutations are mutations in DNA that do not have an observable effect on the organism's phenotype. They are a specific type of neutral mutation. The phrase silent mutation is often used interchangeably with the phrase synonymous mutation; however, synonymous mutations are not always silent, nor vice versa. Synonymous mutations can affect transcription, splicing, mRNA transport, and translation, any of which could alter phenotype, rendering the synonymous mutation non-silent. The substrate specificity of the tRNA to the rare codon can affect the timing of translation, and in turn the co-translational folding of the protein. This is reflected in the codon usage bias that is observed in many species. Mutations that cause the altered codon to produce an amino acid with similar functionality are often classified as silent; if the properties of the amino acid are conserved, this mutation does not usually significantly affect protein function.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

In genetics, complementation occurs when two strains of an organism with different homozygous recessive mutations that produce the same mutant phenotype have offspring that express the wild-type phenotype when mated or crossed. Complementation will ordinarily occur if the mutations are in different genes. Complementation may also occur if the two mutations are at different sites within the same gene, but this effect is usually weaker than that of intergenic complementation. In the case where the mutations are in different genes, each strain's genome supplies the wild-type allele to "complement" the mutated allele of the other strain's genome. Since the mutations are recessive, the offspring will display the wild-type phenotype. A complementation test can be used to test whether the mutations in two strains are in different genes. Complementation ordinarily will occur more weakly or not at all if the mutations are in the same gene. The convenience and essence of this test is that the mutations that produce a phenotype can be assigned to different genes without the exact knowledge of what the gene product is doing on a molecular level. The complementation test was developed by American geneticist Edward B. Lewis.

Nonsense-mediated decay Elimination of mRNA with premature stop codons in eukaryotes

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that exists in all eukaryotes. Its main function is to reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons. Translation of these aberrant mRNAs could, in some cases, lead to deleterious gain-of-function or dominant-negative activity of the resulting proteins.

A suppressor mutation is a second mutation that alleviates or reverts the phenotypic effects of an already existing mutation in a process defined synthetic rescue. Genetic suppression therefore restores the phenotype seen prior to the original background mutation. Suppressor mutations are useful for identifying new genetic sites which affect a biological process of interest. They also provide evidence between functionally interacting molecules and intersecting biological pathways.

This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology and evolutionary biology. It is intended as introductory material for novices; for more specific and technical detail, see the article corresponding to each term. For related terms, see Glossary of evolutionary biology.

Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death, whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype, and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.

Transposons are semi-parasitic DNA sequences which can replicate and spread through the host's genome. They can be harnessed as a genetic tool for analysis of gene and protein function. The use of transposons is well-developed in Drosophila and in Thale cress and bacteria such as Escherichia coli.

Epistasis refers to genetic interactions in which the mutation of one gene masks the phenotypic effects of a mutation at another locus. Systematic analysis of these epistatic interactions can provide insight into the structure and function of genetic pathways. Examining the phenotypes resulting from pairs of mutations helps in understanding how the function of these genes intersects. Genetic interactions are generally classified as either Positive/Alleviating or Negative/Aggravating. Fitness epistasis is positive when a loss of function mutation of two given genes results in exceeding the fitness predicted from individual effects of deleterious mutations, and it is negative when it decreases fitness. Ryszard Korona and Lukas Jasnos showed that the epistatic effect is usually positive in Saccharomyces cerevisiae. Usually, even in case of positive interactions double mutant has smaller fitness than single mutants. The positive interactions occur often when both genes lie within the same pathway Conversely, negative interactions are characterized by an even stronger defect than would be expected in the case of two single mutations, and in the most extreme cases the double mutation is lethal. This aggravated phenotype arises when genes in compensatory pathways are both knocked out.

<span class="mw-page-title-main">Epistasis</span> Dependence of a gene mutations phenotype on mutations in other genes

Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term epistasis specifically meant that the effect of a gene variant is masked by that of a different gene.

BCK2, also named CTR7, is an early cell cycle regulator expressed by the yeast Saccharomyces cerevisiae. It was first discovered in a screen for genes whose overexpression would suppress the phenotypes of PKC1 pathway mutations. Though its mechanism is currently unknown, it is believed to interact with Swi4 and Mcm1, both important transcriptional regulators of early cell cycle.

Genetic interaction networks represent the functional interactions between pairs of genes in an organism and are useful for understanding the relation between genotype and phenotype. The majority of genes do not code for particular phenotypes. Instead, phenotypes often result from the interaction between several genes. In humans, "Each individual carries ~4 million genetic variants and polymorphisms, the overwhelming majority of which cannot be pinpointed as the single cause for a given phenotype. Instead, the effects of genetic variants may combine with one another both additively and synergistically, and each variant's contribution to a quantitative trait or disease risk could depend on the genotypes of dozens of other variants. Interactions between genetic variants, along with the environmental conditions, are likely to play a major role in determining the phenotype that arises from a given genotype." Genetic interaction networks help to understand genetic interactions by identifying such interactions between pairs of genes.

References

  1. 1 2 3 Motter, Adilson E; Gulbahce, Natali; Almaas, Eivind; Barabási, Albert-László (2008). "Predicting synthetic rescues in metabolic networks". Molecular Systems Biology. 4: 168. arXiv: 0803.0962 . doi:10.1038/msb.2008.1. ISSN   1744-4292. PMC   2267730 . PMID   18277384.
  2. 1 2 Puddu, F.; Oelschlaegel, T; Guerini, I; Geisler, NJ; Niu, H; Herzog, M; Salguero, I; Ochoa-Montaño, B; Viré, E; Sung, P; Adams, DJ; Keane, TM; Jackson, SP (2015). "Synthetic viability genomic screening defines Sae2 function in DNA repair". EMBO Journal. 34 (11): 1509–1522. doi:10.15252/embj.201590973. PMC   4474527 . PMID   25899817.
  3. Partow S. H., Hyland P. B., and Mahadevan K., Synthetic rescue couples NADPH generation to metabolite overproduction in Saccharomyces cerevisiae, Metab. Eng. 43, 64 (2017)
  4. Wytock T. P. et al., Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate, PLoS Genetics 14(3), e1007284 (2018).
  5. Magen, A (2019). "Beyond Synthetic Lethality: Charting the Landscape of Pairwise Gene Expression States Associated with Survival in Cancer". Cell Reports. 28 (4): P938–948.E6. doi: 10.1016/j.celrep.2019.06.067 . PMC   8261641 . PMID   31340155.