Synthetic lethality

Last updated

Synthetic lethality is defined as a type of genetic interaction where the combination of two genetic events results in cell death or death of an organism. [1] Although the foregoing explanation is wider than this, it is common when referring to synthetic lethality to mean the situation arising by virtue of a combination of deficiencies of two or more genes leading to cell death (whether by means of apoptosis or otherwise), whereas a deficiency of only one of these genes does not. In a synthetic lethal genetic screen, it is necessary to begin with a mutation that does not result in cell death, although the effect of that mutation could result in a differing phenotype (slow growth for example), and then systematically test other mutations at additional loci to determine which, in combination with the first mutation, causes cell death arising by way of deficiency or abolition of expression.

Contents

Synthetic lethality has utility for purposes of molecular targeted cancer therapy. The first example of a molecular targeted therapeutic agent, which exploited a synthetic lethal approach, arose by means of an inactivated tumor suppressor gene (BRCA1 and 2), a treatment which received FDA approval in 2016 (PARP inhibitor). [2] A sub-case of synthetic lethality, where vulnerabilities are exposed by the deletion of passenger genes rather than tumor suppressor is the so-called "collateral lethality". [3]

Background

Schematic of basic synthetic lethality. Simultaneous mutations in gene pair confer lethality while any other combination of mutations is viable. Synthetic lethality.jpg
Schematic of basic synthetic lethality. Simultaneous mutations in gene pair confer lethality while any other combination of mutations is viable.

The phenomenon of synthetic lethality was first described by Calvin Bridges in 1922, who noticed that some combinations of mutations in the model organism Drosophila melanogaster (the common fruit fly) confer lethality. [1] Theodore Dobzhansky coined the term "synthetic lethality" in 1946 to describe the same type of genetic interaction in wildtype populations of Drosophila. [4] If the combination of genetic events results in a non-lethal reduction in fitness, the interaction is called synthetic sickness. Although in classical genetics the term synthetic lethality refers to the interaction between two genetic perturbations, synthetic lethality can also apply to cases in which the combination of a mutation and the action of a chemical compound causes lethality, whereas the mutation or compound alone are non-lethal. [5]

Synthetic lethality is a consequence of the tendency of organisms to maintain buffering schemes (i.e. backup plans) which engender phenotypic stability notwithstanding underlying genetic variations, environmental changes or other random events, such as mutations. This genetic robustness is the result of parallel redundant pathways and "capacitor" proteins that camouflage the effects of mutations so that important cellular processes do not depend on any individual component. [6] Synthetic lethality can help identify these buffering relationships, and what type of disease or malfunction that may occur when these relationships break down, through the identification of gene interactions that function in either the same biochemical process or pathways that appear to be unrelated. [7]

High-throughput screens

High-throughput synthetic lethal screens may help illuminate questions about how cellular processes work without previous knowledge of gene function or interaction. Screening strategy must take into account the organism used for screening, the mode of genetic perturbation, and whether the screen is forward or reverse. Many of the first synthetic lethal screens were performed in Saccharomyces cerevisiae . Budding yeast has many experimental advantages in screens, including a small genome, fast doubling time, both haploid and diploid states, and ease of genetic manipulation. [8] Gene ablation can be performed using a PCR-based strategy and complete libraries of knockout collections for all annotated yeast genes are publicly available. Synthetic genetic array (SGA), synthetic lethality by microarray (SLAM), and genetic interaction mapping (GIM) are three high-throughput methods for analyzing synthetic lethality in yeast. A genome scale genetic interaction map was created by SGA analysis in S. cerevisiae that comprises about 75% of all yeast genes. [9]

Collateral lethality

Collateral lethality is a sub-case of synthetic lethality in personalized cancer therapy, where vulnerabilities are exposed by the deletion of passenger genes rather than tumor suppressor genes, which are deleted by virtue of chromosomal proximity to major deleted tumor suppressor loci. [3]

DDR deficiencies

DNA mismatch repair deficiency

Mutations in genes employed in DNA mismatch repair (MMR) cause a high mutation rate. [10] [11] In tumors, such frequent subsequent mutations often generate "non-self" immunogenic antigens. A human Phase II clinical trial, with 41 patients, evaluated one synthetic lethal approach for tumors with or without MMR defects. [12] In the case of sporadic tumors evaluated, the majority would be deficient in MMR due to epigenetic repression of an MMR gene (see DNA mismatch repair). The product of gene PD-1 ordinarily represses cytotoxic immune responses. Inhibition of this gene allows a greater immune response. In this Phase II clinical trial with 47 patients, when cancer patients with a defect in MMR in their tumors were exposed to an inhibitor of PD-1, 67% - 78% of patients experienced immune-related progression-free survival. In contrast, for patients without defective MMR, addition of PD-1 inhibitor generated only 11% of patients with immune-related progression-free survival. Thus inhibition of PD-1 is primarily synthetically lethal with MMR defects.

Werner syndrome gene deficiency

The analysis of 630 human primary tumors in 11 tissues shows that WRN promoter hypermethylation (with loss of expression of WRN protein) is a common event in tumorigenesis. [13] The WRN gene promoter is hypermethylated in about 38% of colorectal cancers and non-small-cell lung carcinomas and in about 20% or so of stomach cancers, prostate cancers, breast cancers, non-Hodgkin lymphomas and chondrosarcomas, plus at significant levels in the other cancers evaluated. The WRN helicase protein is important in homologous recombinational DNA repair and also has roles in non-homologous end joining DNA repair and base excision DNA repair. [14]

Topoisomerase inhibitors are frequently used as chemotherapy for different cancers, though they cause bone marrow suppression, are cardiotoxic and have variable effectiveness. [15] A 2006 retrospective study, with long clinical follow-up, was made of colon cancer patients treated with the topoisomerase inhibitor irinotecan. In this study, 45 patients had hypermethylated WRN gene promoters and 43 patients had unmethylated WRN gene promoters. [13] Irinitecan was more strongly beneficial for patients with hypermethylated WRN promoters (39.4 months survival) than for those with unmethylated WRN promoters (20.7 months survival). Thus, a topoisomerase inhibitor appeared to be synthetically lethal with deficient expression of WRN. Further evaluations have also indicated synthetic lethality of deficient expression of WRN and topoisomerase inhibitors. [16] [17] [18] [19] [20]

Clinical and preclinical PARP1 inhibitor synthetic lethality

As reviewed by Murata et al., [21] five different PARP1 inhibitors are now undergoing Phase I, II and III clinical trials, to determine if particular PARP1 inhibitors are synthetically lethal in a large variety of cancers, including those in the prostate, pancreas, non-small-cell lung tumors, lymphoma, multiple myeloma, and Ewing sarcoma. In addition, in preclinical studies using cells in culture or within mice, PARP1 inhibitors are being tested for synthetic lethality against epigenetic and mutational deficiencies in about 20 DNA repair defects beyond BRCA1/2 deficiencies. These include deficiencies in PALB2 , FANCD2 , RAD51 , ATM , MRE11 , p53 , XRCC1 and LSD1 .

Preclinical ARID1A synthetic lethality

ARID1A, a chromatin modifier, is required for non-homologous end joining, a major pathway that repairs double-strand breaks in DNA, [22] and also has transcription regulatory roles. [23] ARID1A mutations are one of the 12 most common carcinogenic mutations. [24] Mutation or epigenetically decreased expression [25] of ARID1A has been found in 17 types of cancer. [26] Pre-clinical studies in cells and in mice show that synthetic lethality for deficient ARID1A expression occurs by either inhibition of the methyltransferase activity of EZH2, [27] [28] by inhibition of the DNA repair kinase ATR, [29] or by exposure to the kinase inhibitor dasatinib. [30]

Preclinical RAD52 synthetic lethality

There are two pathways for homologous recombinational repair of double-strand breaks. The major pathway depends on BRCA1, PALB2 and BRCA2 while an alternative pathway depends on RAD52. [31] Pre-clinical studies, involving epigenetically reduced or mutated BRCA-deficient cells (in culture or injected into mice), show that inhibition of RAD52 is synthetically lethal with BRCA-deficiency. [32]

Side effects

Although treatments using synthetic lethality can stop or slow progression of cancers and prolong survival, each of the synthetic lethal treatments has some adverse side effects. For example, more than 20% of patients treated with an inhibitor of PD-1 encounter fatigue, rash, pruritus, cough, diarrhea, decreased appetite, constipation or arthralgia. [33] Thus, it is important to determine which DDR deficiency is present, so that only an effective synthetic lethal treatment can be applied, and not unnecessarily subject patients to adverse side effects without a direct benefit.

See also

Related Research Articles

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">Neoplasm</span> Abnormal mass of tissue as a result of abnormal growth or division of cells

A neoplasm is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists in growing abnormally, even if the original trigger is removed. This abnormal growth usually forms a mass, when it may be called a tumour or tumor.

<span class="mw-page-title-main">ATM serine/threonine kinase</span>

ATM serine/threonine kinase or Ataxia-telangiectasia mutated, symbol ATM, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, oxidative stress, topoisomerase cleavage complexes, splicing intermediates, R-loops and in some cases by single-strand DNA breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2, BRCA1, NBS1 and H2AX are tumor suppressors.

Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnormal cell division. Cell division is a physiological process that occurs in almost all tissues and under a variety of circumstances. Normally, the balance between proliferation and programmed cell death, in the form of apoptosis, is maintained to ensure the integrity of tissues and organs. According to the prevailing accepted theory of carcinogenesis, the somatic mutation theory, mutations in DNA and epimutations that lead to cancer disrupt these orderly processes by interfering with the programming regulating the processes, upsetting the normal balance between proliferation and cell death. This results in uncontrolled cell division and the evolution of those cells by natural selection in the body. Only certain mutations lead to cancer whereas the majority of mutations do not.

<span class="mw-page-title-main">DNA mismatch repair</span> System for fixing base errors of DNA replication

DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.

<span class="mw-page-title-main">Werner syndrome helicase</span> Protein-coding gene in the species Homo sapiens

Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division. Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called transcription. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA.

<span class="mw-page-title-main">Microsatellite instability</span> Condition of genetic hypermutability

Microsatellite instability (MSI) is the condition of genetic hypermutability that results from impaired DNA mismatch repair (MMR). The presence of MSI represents phenotypic evidence that MMR is not functioning normally.

<span class="mw-page-title-main">Oncogenomics</span> Sub-field of genomics

Oncogenomics is a sub-field of genomics that characterizes cancer-associated genes. It focuses on genomic, epigenomic and transcript alterations in cancer.

<span class="mw-page-title-main">Type I topoisomerase</span> Class of enzymes

In molecular biology Type I topoisomerases are enzymes that cut one of the two strands of double-stranded DNA, relax the strand, and reanneal the strand. They are further subdivided into two structurally and mechanistically distinct topoisomerases: type IA and type IB.

<span class="mw-page-title-main">MSH2</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

<span class="mw-page-title-main">DNA-PKcs</span> Protein-coding gene in the species Homo sapiens

DNA-dependent protein kinase, catalytic subunit, also known as DNA-PKcs, is an enzyme that in humans is encoded by the gene designated as PRKDC or XRCC7. DNA-PKcs belongs to the phosphatidylinositol 3-kinase-related kinase protein family. The DNA-Pkcs protein is a serine/threonine protein kinase consisting of a single polypeptide chain of 4,128 amino acids.

<span class="mw-page-title-main">PMS2</span> Protein-coding gene in the species Homo sapiens

Mismatch repair endonuclease PMS2 is an enzyme that in humans is encoded by the PMS2 gene.

<span class="mw-page-title-main">TOP1</span> DNA topoisomerase enzyme

DNA topoisomerase 1 is an enzyme that in humans is encoded by the TOP1 gene. It is a DNA topoisomerase, an enzyme that catalyzes the transient breaking and rejoining of a single strand of DNA.

<span class="mw-page-title-main">MSH3</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein, MutS Homolog 3 (MSH3) is a human homologue of the bacterial mismatch repair protein MutS that participates in the mismatch repair (MMR) system. MSH3 typically forms the heterodimer MutSβ with MSH2 in order to correct long insertion/deletion loops and base-base mispairs in microsatellites during DNA synthesis. Deficient capacity for MMR is found in approximately 15% of colorectal cancers, and somatic mutations in the MSH3 gene can be found in nearly 50% of MMR-deficient colorectal cancers.

<span class="mw-page-title-main">MBD4</span> Protein-coding gene in the species Homo sapiens

Methyl-CpG-binding domain protein 4 is a protein that in humans is encoded by the MBD4 gene.

Somatic evolution is the accumulation of mutations and epimutations in somatic cells during a lifetime, and the effects of those mutations and epimutations on the fitness of those cells. This evolutionary process has first been shown by the studies of Bert Vogelstein in colon cancer. Somatic evolution is important in the process of aging as well as the development of some diseases, including cancer.

Genome instability refers to a high frequency of mutations within the genome of a cellular lineage. These mutations can include changes in nucleic acid sequences, chromosomal rearrangements or aneuploidy. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some neurodegenerative diseases such as amyotrophic lateral sclerosis or the neuromuscular disease myotonic dystrophy.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

<span class="mw-page-title-main">Pevonedistat</span> Chemical compound

Pevonedistat (MLN4924) is a selective NEDD8 inhibitor. It is being investigated as a cancer treatment, e.g. for mantle cell lymphoma (MCL).

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

References

  1. 1 2 Nijman SM (January 2011). "Synthetic lethality: general principles, utility and detection using genetic screens in human cells". FEBS Letters. 585 (1): 1–6. doi:10.1016/j.febslet.2010.11.024. PMC   3018572 . PMID   21094158.
  2. Lord CJ, Ashworth A (March 2017). "PARP inhibitors: Synthetic lethality in the clinic". Science. 355 (6330): 1152–1158. Bibcode:2017Sci...355.1152L. doi:10.1126/science.aam7344. PMC   6175050 . PMID   28302823.
  3. 1 2 Muller FL, Colla S, Aquilanti E, Manzo VE, Genovese G, Lee J, et al. (August 2012). "Passenger deletions generate therapeutic vulnerabilities in cancer". Nature. 488 (7411): 337–42. Bibcode:2012Natur.488..337M. doi:10.1038/nature11331. PMC   3712624 . PMID   22895339.
  4. Ferrari E, Lucca C, Foiani M (November 2010). "A lethal combination for cancer cells: synthetic lethality screenings for drug discovery". European Journal of Cancer. 46 (16): 2889–95. doi:10.1016/j.ejca.2010.07.031. PMID   20724143.
  5. Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (November 1997). "Integrating genetic approaches into the discovery of anticancer drugs". Science. 278 (5340): 1064–8. Bibcode:1997Sci...278.1064H. doi:10.1126/science.278.5340.1064. PMID   9353181.
  6. Baugh LR, Wen JC, Hill AA, Slonim DK, Brown EL, Hunter CP (2005). "Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions". Genome Biology. 6 (5): R45. doi: 10.1186/gb-2005-6-5-r45 . PMC   1175957 . PMID   15892873.
  7. Hartman JL, Garvik B, Hartwell L (February 2001). "Principles for the buffering of genetic variation". Science. 291 (5506): 1001–4. Bibcode:2001Sci...291.1001H. doi:10.1126/science.291.5506.1001. PMID   11232561.
  8. Matuo R, Sousa FG, Soares DG, Bonatto D, Saffi J, Escargueil AE, et al. (October 2012). "Saccharomyces cerevisiae as a model system to study the response to anticancer agents". Cancer Chemotherapy and Pharmacology. 70 (4): 491–502. doi:10.1007/s00280-012-1937-4. PMID   22851206. S2CID   8887133.
  9. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. (January 2010). "The genetic landscape of a cell". Science. 327 (5964): 425–31. Bibcode:2010Sci...327..425C. doi:10.1126/science.1180823. PMC   5600254 . PMID   20093466.
  10. Narayanan L, Fritzell JA, Baker SM, Liskay RM, Glazer PM (April 1997). "Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2". Proceedings of the National Academy of Sciences of the United States of America. 94 (7): 3122–7. Bibcode:1997PNAS...94.3122N. doi: 10.1073/pnas.94.7.3122 . PMC   20332 . PMID   9096356.
  11. Hegan DC, Narayanan L, Jirik FR, Edelmann W, Liskay RM, Glazer PM (December 2006). "Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6". Carcinogenesis. 27 (12): 2402–8. doi:10.1093/carcin/bgl079. PMC   2612936 . PMID   16728433.
  12. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. (June 2015). "PD-1 Blockade in Tumors with Mismatch-Repair Deficiency". The New England Journal of Medicine. 372 (26): 2509–20. doi:10.1056/NEJMoa1500596. PMC   4481136 . PMID   26028255.
  13. 1 2 Agrelo R, Cheng WH, Setien F, Ropero S, Espada J, Fraga MF, et al. (June 2006). "Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer". Proceedings of the National Academy of Sciences of the United States of America. 103 (23): 8822–7. Bibcode:2006PNAS..103.8822A. doi: 10.1073/pnas.0600645103 . PMC   1466544 . PMID   16723399.
  14. Monnat RJ (October 2010). "Human RECQ helicases: roles in DNA metabolism, mutagenesis and cancer biology". Seminars in Cancer Biology. 20 (5): 329–39. doi:10.1016/j.semcancer.2010.10.002. PMC   3040982 . PMID   20934517.
  15. Pommier Y (January 2013). "Drugging topoisomerases: lessons and challenges". ACS Chemical Biology. 8 (1): 82–95. doi:10.1021/cb300648v. PMC   3549721 . PMID   23259582.
  16. Wang L, Xie L, Wang J, Shen J, Liu B (December 2013). "Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer". BMC Gastroenterology. 13: 173. doi: 10.1186/1471-230X-13-173 . PMC   3877991 . PMID   24359226.
  17. Bird JL, Jennert-Burston KC, Bachler MA, Mason PA, Lowe JE, Heo SJ, et al. (February 2012). "Recapitulation of Werner syndrome sensitivity to camptothecin by limited knockdown of the WRN helicase/exonuclease". Biogerontology. 13 (1): 49–62. doi:10.1007/s10522-011-9341-8. PMID   21786128. S2CID   18189226.
  18. Masuda K, Banno K, Yanokura M, Tsuji K, Kobayashi Y, Kisu I, et al. (October 2012). "Association of epigenetic inactivation of the WRN gene with anticancer drug sensitivity in cervical cancer cells". Oncology Reports. 28 (4): 1146–52. doi:10.3892/or.2012.1912. PMC   3583574 . PMID   22797812.
  19. Futami K, Takagi M, Shimamoto A, Sugimoto M, Furuichi Y (October 2007). "Increased chemotherapeutic activity of camptothecin in cancer cells by siRNA-induced silencing of WRN helicase". Biological & Pharmaceutical Bulletin. 30 (10): 1958–61. doi: 10.1248/bpb.30.1958 . PMID   17917271.
  20. Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M (May 2008). "Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells". Cancer Science. 99 (5): 843–8. doi: 10.1111/j.1349-7006.2008.00778.x . PMID   18312465. S2CID   21078795.
  21. Murata S, Zhang C, Finch N, Zhang K, Campo L, Breuer EK (2016). "Predictors and Modulators of Synthetic Lethality: An Update on PARP Inhibitors and Personalized Medicine". BioMed Research International. 2016: 2346585. doi: 10.1155/2016/2346585 . PMC   5013223 . PMID   27642590.
  22. Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, Yasui A (May 2014). "SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability". Cancer Research. 74 (9): 2465–75. doi: 10.1158/0008-5472.CAN-13-3608 . PMID   24788099.
  23. Raab JR, Resnick S, Magnuson T (December 2015). "Genome-Wide Transcriptional Regulation Mediated by Biochemically Distinct SWI/SNF Complexes". PLOS Genetics. 11 (12): e1005748. doi: 10.1371/journal.pgen.1005748 . PMC   4699898 . PMID   26716708.
  24. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. (January 2014). "Discovery and saturation analysis of cancer genes across 21 tumour types". Nature. 505 (7484): 495–501. Bibcode:2014Natur.505..495L. doi:10.1038/nature12912. PMC   4048962 . PMID   24390350.
  25. Zhang X, Sun Q, Shan M, Niu M, Liu T, Xia B, et al. (2013). "Promoter hypermethylation of ARID1A gene is responsible for its low mRNA expression in many invasive breast cancers". PLOS ONE. 8 (1): e53931. Bibcode:2013PLoSO...853931Z. doi: 10.1371/journal.pone.0053931 . PMC   3549982 . PMID   23349767.
  26. Wu JN, Roberts CW (January 2013). "ARID1A mutations in cancer: another epigenetic tumor suppressor?". Cancer Discovery. 3 (1): 35–43. doi:10.1158/2159-8290.CD-12-0361. PMC   3546152 . PMID   23208470.
  27. Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, et al. (March 2015). "Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers". Nature Medicine. 21 (3): 231–8. doi:10.1038/nm.3799. PMC   4352133 . PMID   25686104.
  28. Kim KH, Kim W, Howard TP, Vazquez F, Tsherniak A, Wu JN, et al. (December 2015). "SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2". Nature Medicine. 21 (12): 1491–6. doi:10.1038/nm.3968. PMC   4886303 . PMID   26552009.
  29. Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, et al. (December 2016). "ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A". Nature Communications. 7: 13837. Bibcode:2016NatCo...713837W. doi:10.1038/ncomms13837. PMC   5159945 . PMID   27958275.
  30. Miller RE, Brough R, Bajrami I, Williamson CT, McDade S, Campbell J, et al. (July 2016). "Synthetic Lethal Targeting of ARID1A-Mutant Ovarian Clear Cell Tumors with Dasatinib". Molecular Cancer Therapeutics. 15 (7): 1472–84. doi: 10.1158/1535-7163.MCT-15-0554 . PMID   27364904.
  31. Lok BH, Carley AC, Tchang B, Powell SN (July 2013). "RAD52 inactivation is synthetically lethal with deficiencies in BRCA1 and PALB2 in addition to BRCA2 through RAD51-mediated homologous recombination". Oncogene. 32 (30): 3552–8. doi:10.1038/onc.2012.391. PMC   5730454 . PMID   22964643.
  32. Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, Padget M, Irvine DA, Sliwinski T, et al. (August 2013). "Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile". Blood. 122 (7): 1293–304. doi:10.1182/blood-2013-05-501072. PMC   3744994 . PMID   23836560.
  33. Villadolid J, Amin A (October 2015). "Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities". Translational Lung Cancer Research. 4 (5): 560–75. doi:10.3978/j.issn.2218-6751.2015.06.06. PMC   4630514 . PMID   26629425.