Tail risk parity is an extension of the risk parity concept that takes into account the behavior of the portfolio components during tail risk events. [1] [2] [3] The goal of the tail risk parity approach is to protect investment portfolios at the times of economic crises and reduce the cost of such protection during normal market conditions. In the tail risk parity framework risk is defined as expected tail loss. The tail risk parity concept is similar to drawdown parity [4]
Traditional portfolio diversification relies on the correlations among assets and among asset classes, but these correlations are not constant. [5] [6] Because correlations among assets and asset classes increase during tail risk events and can go to 100%, TRP divides asset classes into buckets that behave differently under market stress conditions, while assets in each bucket behave similarly. During tail risk events asset prices can fall significantly creating deep portfolio drawdowns. Asset classes in each tail risk bucket fall simultaneously during tail risk events and diversification of capital within buckets does not work because periods of negative performance of portfolio components are overlapped. Diversification across tail risk buckets can provide benefits in the form of smaller portfolio drawdowns and reduce the need for tail risk protection.
Baitinger, Dragosch, and Topalova in their article "Extending the Risk Parity Approach to Higher Moments: Is There Any Value Added?" propose an extension of the classical risk parity portfolio optimization approach from Maillard et al. (2010) to incorporate higher moments such as skewness and kurtosis. [7] They present a methodology for consistently incorporating higher moments like skewness and kurtosis into the risk parity optimization framework developed by Maillard et al. (2010). [8] This allows tail risks to be considered in the optimization. Empirical analysis on four real-world datasets by Baitinger, Dragosch, and Topalova finds mixed results. Their higher moment risk parity methods tend to outperform classical risk parity significantly when the underlying data exhibits high non-normality and co-dependencies. But they provide little value-add in other datasets. Simulation studies confirm the value of higher moment methods increases with degree of non-normality and correlation in the data. The inferred optimization approach also does better when provided enough data.
In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio.
Market risk is the risk of losses in positions arising from movements in market variables like prices and volatility. There is no unique classification as each classification may refer to different aspects of market risk. Nevertheless, the most commonly used types of market risk are:
Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. The variance of return is used as a measure of risk, because it is tractable when assets are combined into portfolios. Often, the historical variance and covariance of returns is used as a proxy for the forward-looking versions of these quantities, but other, more sophisticated methods are available.
In finance, a portfolio is a collection of investments.
Financial risk management is the practice of protecting economic value in a firm by managing exposure to financial risk - principally operational risk, credit risk and market risk, with more specific variants as listed aside. As for risk management more generally, financial risk management requires identifying the sources of risk, measuring these, and crafting plans to mitigate them. See Finance § Risk management for an overview.
Asset allocation is the implementation of an investment strategy that attempts to balance risk versus reward by adjusting the percentage of each asset in an investment portfolio according to the investor's risk tolerance, goals and investment time frame. The focus is on the characteristics of the overall portfolio. Such a strategy contrasts with an approach that focuses on individual assets.
Financial risk is any of various types of risk associated with financing, including financial transactions that include company loans in risk of default. Often it is understood to include only downside risk, meaning the potential for financial loss and uncertainty about its extent.
In finance, volatility arbitrage is a term for financial arbitrage techniques directly dependent and based on volatility.
A fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed. Different research communities favor one or the other largely for historical reasons, and may have differences in the precise definition of either.
In finance, diversification is the process of allocating capital in a way that reduces the exposure to any one particular asset or risk. A common path towards diversification is to reduce risk or volatility by investing in a variety of assets. If asset prices do not change in perfect synchrony, a diversified portfolio will have less variance than the weighted average variance of its constituent assets, and often less volatility than the least volatile of its constituents.
The following outline is provided as an overview of and topical guide to finance:
In statistics and decision theory, kurtosis risk is the risk that results when a statistical model assumes the normal distribution, but is applied to observations that have a tendency to occasionally be much farther from the average than is expected for a normal distribution.
In economics and finance, a Taleb distribution is the statistical profile of an investment which normally provides a payoff of small positive returns, while carrying a small but significant risk of catastrophic losses. The term was coined by journalist Martin Wolf and economist John Kay to describe investments with a "high probability of a modest gain and a low probability of huge losses in any period."
Tail risk, sometimes called "fat tail risk," is the financial risk of an asset or portfolio of assets moving more than three standard deviations from its current price, above the risk of a normal distribution. Tail risks include low-probability events arising at both ends of a normal distribution curve, also known as tail events. However, as investors are generally more concerned with unexpected losses rather than gains, a debate about tail risk is focused on the left tail. Prudent asset managers are typically cautious with the tail involving losses which could damage or ruin portfolios, and not the beneficial tail of outsized gains.
Risk parity is an approach to investment management which focuses on allocation of risk, usually defined as volatility, rather than allocation of capital. The risk parity approach asserts that when asset allocations are adjusted to the same risk level, the risk parity portfolio can achieve a higher Sharpe ratio and can be more resistant to market downturns than the traditional portfolio. Risk parity is vulnerable to significant shifts in correlation regimes, such as observed in Q1 2020, which led to the significant underperformance of risk-parity funds in the Covid-19 sell-off.
Portfolio optimization is the process of selecting an optimal portfolio, out of a set of considered portfolios, according to some objective. The objective typically maximizes factors such as expected return, and minimizes costs like financial risk, resulting in a multi-objective optimization problem. Factors being considered may range from tangible to intangible.
Financial correlations measure the relationship between the changes of two or more financial variables over time. For example, the prices of equity stocks and fixed interest bonds often move in opposite directions: when investors sell stocks, they often use the proceeds to buy bonds and vice versa. In this case, stock and bond prices are negatively correlated.
Brandywine Asset Management, Inc. is an American investment management firm founded and managed by Michael Dever. The firm is registered as a commodity trading advisor.
The S&P/ASX200 VIX (A-VIX) is a financial market product that participants trade based on the market price of the implied volatility in the underlying Australian equity index.
In economics and finance, a holy grail distribution is a probability distribution with positive mean and right fat tail — a returns profile of a hypothetical investment vehicle that produces small returns centered on zero and occasionally exhibits outsized positive returns.