In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor. [1] [2] [3]
Consider a plane wall located at in the cylindrical coordinates , moving with a constant velocity towards the left. Consider another plane wall(scraper), at an inclined position, making an angle from the positive direction and let the point of intersection be at . This description is equivalent to moving the scraper towards right with velocity . The problem is singular at because at the origin, the velocities are discontinuous, thus the velocity gradient is infinite there.
Taylor noticed that the inertial terms are negligible as long as the region of interest is within ( or, equivalently Reynolds number ), thus within the region the flow is essentially a Stokes flow. For example, George Batchelor gives a typical value for lubricating oil with velocity as . [4] Then for two-dimensional planar problem, the equation is
where is the velocity field and is the stream function. The boundary conditions are
Attempting a separable solution of the form reduces the problem to
with boundary conditions
The solution is [5]
Therefore, the velocity field is
Pressure can be obtained through integration of the momentum equation
which gives,
The tangential stress and the normal stress on the scraper due to pressure and viscous forces are
The same scraper stress if resolved according to Cartesian coordinates (parallel and perpendicular to the lower plate i.e. ) are
As noted earlier, all the stresses become infinite at , because the velocity gradient is infinite there. In real life, there will be a huge pressure at the point, which depends on the geometry of the contact. The stresses are shown in the figure as given in the Taylor's original paper.
The stress in the direction parallel to the lower wall decreases as increases, and reaches its minimum value at . Taylor says: "The most interesting and perhaps unexpected feature of the calculations is that does not change sign in the range . In the range the contribution to due to normal stress is of opposite sign to that due to tangential stress, but the latter is the greater. The palette knives used by artists for removing paint from their palettes are very flexible scrapers. They can therefore only be used at such an angle that is small and as will be seen in the figure this occurs only when is nearly . In fact artists instinctively hold their palette knives in this position." Further he adds "A plasterer on the other hand holds a smoothing tool so that is small. In that way he can get the large values of which are needed in forcing plaster from protuberances to hollows."
Since scraping applications are important for non-Newtonian fluid (for example, scraping paint, nail polish, cream, butter, honey, etc.,), it is essential to consider this case. The analysis was carried out by J. Riedler and Wilhelm Schneider in 1983 and they were able to obtain self-similar solutions for power-law fluids satisfying the relation for the apparent viscosity [6]
where and are constants. The solution for the streamfunction of the flow created by the plate moving towards right is given by
where
and
where is the root of . It can be verified that this solution reduces to that of Taylor's for Newtonian fluids, i.e., when .
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.
In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.
In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry.
In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.
In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.
In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."
In continuum mechanics, the Flamant solution provides expressions for the stresses and displacements in a linear elastic wedge loaded by point forces at its sharp end. This solution was developed by Alfred-Aimé Flamant in 1892 by modifying the three dimensional solutions for linear elasticity of Joseph Valentin Boussinesq.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
Bending of plates, or plate bending, refers to the deflection of a plate perpendicular to the plane of the plate under the action of external forces and moments. The amount of deflection can be determined by solving the differential equations of an appropriate plate theory. The stresses in the plate can be calculated from these deflections. Once the stresses are known, failure theories can be used to determine whether a plate will fail under a given load.
In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".
Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature
Moffatt eddies are sequences of eddies that develop in corners bounded by plane walls due to an arbitrary disturbance acting at asymptotically large distances from the corner. Although the source of motion is the arbitrary disturbance at large distances, the eddies develop quite independently and thus solution of these eddies emerges from an eigenvalue problem, a self-similar solution of the second kind.
Chandrasekhar–Page equations describe the wave function of the spin-1/2 massive particles, that resulted by seeking a separable solution to the Dirac equation in Kerr metric or Kerr–Newman metric. In 1976, Subrahmanyan Chandrasekhar showed that a separable solution can be obtained from the Dirac equation in Kerr metric. Later, Don Page extended this work to Kerr–Newman metric, that is applicable to charged black holes. In his paper, Page notices that N. Toop also derived his results independently, as informed to him by Chandrasekhar.
In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics. It is a special case of 4D N = 1 global supersymmetry.