Self-similar solution

Last updated

In the study of partial differential equations, particularly in fluid dynamics, a self-similar solution is a form of solution which is similar to itself if the independent and dependent variables are appropriately scaled. Self-similar solutions appear whenever the problem lacks a characteristic length or time scale (for example, the Blasius boundary layer of an infinite plate, but not of a finite-length plate). These include, for example, the Blasius boundary layer or the Sedov–Taylor shell. [1] [2]

Contents

Concept

A powerful tool in physics is the concept of dimensional analysis and scaling laws. By examining the physical effects present in a system, we may estimate their size and hence which, for example, might be neglected. In some cases, the system may not have a fixed natural length or time scale, while the solution depends on space or time. It is then necessary to construct a scale using space or time and the other dimensional quantities present—such as the viscosity . These constructs are not 'guessed' but are derived immediately from the scaling of the governing equations.

Classification

The normal self-similar solution is also referred to as a self-similar solution of the first kind, since another type of self-similar exists for finite-sized problems, which cannot be derived from dimensional analysis, known as a self-similar solution of the second kind.

Self-similar solution of the second kind

The early identification of self-similar solutions of the second kind can be found in problems of imploding shock waves (Guderley–Landau–Stanyukovich problem), analyzed by G. Guderley (1942) and Lev Landau and K. P. Stanyukovich (1944), [3] and propagation of shock waves by a short impulse, analysed by Carl Friedrich von Weizsäcker [4] and Yakov Borisovich Zel'dovich (1956), who also classified it as the second kind for the first time. [5] An independent study about the same field was published by Leonid Ivanovich Sedov in 1959. [6] A complete description was made in 1972 by Grigory Barenblatt and Yakov Borisovich Zel'dovich. [7] The self-similar solution of the second kind also appears in different contexts such as in boundary-layer problems subjected to small perturbations, [8] as was identified by Keith Stewartson, [9] Paul A. Libby and Herbert Fox. [10] Moffatt eddies are also a self-similar solution of the second kind. The geneal mathematical properties of asymptotic behavior of solutions and self-similar solutions can be found in. [11]

Examples

Rayleigh problem

A simple example is a semi-infinite domain bounded by a rigid wall and filled with viscous fluid. [12] At time the wall is made to move with constant speed in a fixed direction (for definiteness, say the direction and consider only the plane), one can see that there is no distinguished length scale given in the problem. This is known as the Rayleigh problem. The boundary conditions of no-slip is

Also, the condition that the plate has no effect on the fluid at infinity is enforced as

Now, from the Navier-Stokes equations one can observe that this flow will be rectilinear, with gradients in the direction and flow in the direction, and that the pressure term will have no tangential component so that . The component of the Navier-Stokes equations then becomes and the scaling arguments can be applied to show that which gives the scaling of the co-ordinate as .

This allows one to pose a self-similar ansatz such that, with and dimensionless,

The above contains all the relevant physics and the next step is to solve the equations, which for many cases will include numerical methods. This equation is with solution satisfying the boundary conditions that which is a self-similar solution of the first kind.

Semi-infinite solid approximation

In transient heat transfer applications, such as impingement heating on a ship deck during missile launches and the sizing of thermal protection systems, self-similar solutions can be found for semi-infinite solids. [13] [14] The governing equation when heat conduction is the primary heat transfer mechanism is the one-dimensional energy equation:where is the material's density, is the material's specific heat capacity, is the material's thermal conductivity. In the case when the material is assumed to be homogeneous and its properties constant, the energy equation is reduced to the heat equation:with being the thermal diffusivity. By introducing the similarity variable and assuming that , the PDE can be transformed into the ODE:If a simple model of thermal protection system sizing is assumed, where decomposition, pyrolysis gas flow, and surface recession are ignored, with the initial temperature and a constant surface temperature , then the ODE can be solved for the temperature at a depth and time : [14] where is the error function.

Related Research Articles

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

<span class="mw-page-title-main">Boundary layer</span> Layer of fluid in the immediate vicinity of a bounding surface

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

In special relativity, electromagnetism and wave theory, the d'Alembert operator, also called the d'Alembertian, wave operator, box operator or sometimes quabla operator is the Laplace operator of Minkowski space. The operator is named after French mathematician and physicist Jean le Rond d'Alembert.

<span class="mw-page-title-main">Ekman spiral</span> Velocity profile of wind driven current with depth

The Ekman spiral is an arrangement of ocean currents: the directions of horizontal current appear to twist as the depth changes. The oceanic wind driven Ekman spiral is the result of a force balance created by a shear stress force, Coriolis force and the water drag. This force balance gives a resulting current of the water different from the winds. In the ocean, there are two places where the Ekman spiral can be observed. At the surface of the ocean, the shear stress force corresponds with the wind stress force. At the bottom of the ocean, the shear stress force is created by friction with the ocean floor. This phenomenon was first observed at the surface by the Norwegian oceanographer Fridtjof Nansen during his Fram expedition. He noticed that icebergs did not drift in the same direction as the wind. His student, the Swedish oceanographer Vagn Walfrid Ekman, was the first person to physically explain this process.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

Scale analysis is a powerful tool used in the mathematical sciences for the simplification of equations with many terms. First the approximate magnitude of individual terms in the equations is determined. Then some negligibly small terms may be ignored.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

<span class="mw-page-title-main">Shallow water equations</span> Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

In mathematics, the Kardar–Parisi–Zhang (KPZ) equation is a non-linear stochastic partial differential equation, introduced by Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang in 1986. It describes the temporal change of a height field with spatial coordinate and time coordinate :

<span class="mw-page-title-main">Falkner–Skan boundary layer</span> Boundary layer that forms on a wedge

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is also representative of flow on a flat plate with an imposed pressure gradient along the plate length, a situation often encountered in wind tunnel flow. It is a generalization of the flat plate Blasius boundary layer in which the pressure gradient along the plate is zero.

In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis, while an axial stretching causes the vorticity to increase. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the three effects are in balance.

<span class="mw-page-title-main">Path integrals in polymer science</span>

A polymer is a macromolecule, composed of many similar or identical repeated subunits. Polymers are common in, but not limited to, organic media. They range from familiar synthetic plastics to natural biopolymers such as DNA and proteins. Their unique elongated molecular structure produces unique physical properties, including toughness, viscoelasticity, and a tendency to form glasses and semicrystalline structures. The modern concept of polymers as covalently bonded macromolecular structures was proposed in 1920 by Hermann Staudinger. One sub-field in the study of polymers is polymer physics. As a part of soft matter studies, Polymer physics concerns itself with the study of mechanical properties and focuses on the perspective of condensed matter physics.

Triple deck theory is a theory that describes a three-layered boundary-layer structure when sufficiently large disturbances are present in the boundary layer. This theory is able to successfully explain the phenomenon of boundary layer separation, but it has found applications in many other flow setups as well, including the scaling of the lower-branch instability (T-S) of the Blasius flow, etc. James Lighthill, Lev Landau and others were the first to realize that to explain boundary layer separation, different scales other than the classical boundary-layer scales need to be introduced. These scales were first introduced independently by James Lighthill and E. A. Müller in 1953. The triple-layer structure itself was independently discovered by Keith Stewartson (1969) and V. Y. Neiland (1969) and by A. F. Messiter (1970). Stewartson and Messiter considered the separated flow near the trailing edge of a flat plate, whereas Neiland studied the case of a shock impinging on a boundary layer.

Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.

In fluid dynamics, a stagnation point flow refers to a fluid flow in the neighbourhood of a stagnation point or a stagnation line with which the stagnation point/line refers to a point/line where the velocity is zero in the inviscid approximation. The flow specifically considers a class of stagnation points known as saddle points wherein incoming streamlines gets deflected and directed outwards in a different direction; the streamline deflections are guided by separatrices. The flow in the neighborhood of the stagnation point or line can generally be described using potential flow theory, although viscous effects cannot be neglected if the stagnation point lies on a solid surface.

In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, to the problem derived by Schlichting in 1933 and the corresponding problem in axisymmetric coordinates is called as Schlichting jet. The solution is valid only for distances far away from the jet origin.

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

In fluid dynamics, Berman flow is a steady flow created inside a rectangular channel with two equally porous walls. The concept is named after a scientist Abraham S. Berman who formulated the problem in 1953.

Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, who also formulated the corresponding planar Bickley jet problem in the same paper. The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations, which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds number, for distances far away from the jet origin.

References

  1. Gratton, J. (1991). Similarity and self similarity in fluid dynamics. Fundamentals of Cosmic Physics. Vol. 15. New York: Gordon and Breach. pp. 1–106. OCLC   35504041.
  2. Barenblatt, Grigory Isaakovich (1996). Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Vol. 14. Cambridge University Press. ISBN   0-521-43522-6.
  3. Stanyukovich, K. P. (2016). Unsteady motion of continuous media. Elsevier. Page 521
  4. Weizsäcker, CF (1954). Approximate representation of strong unsteady shock waves through homology solutions. Zeitschrift für Naturforschung A, 9 (4), 269-275.
  5. Zeldovich, Y. B. (1956). "The motion of a gas under the action of a short term pressure shock". Akust. Zh. 2 (1): 28–38.
  6. Sedov, L.I. (1959). Similarity and Dimensional Methods in Mechanics. Elsevier Inc. ISBN   978-1-4832-0088-0.{{cite book}}: CS1 maint: date and year (link)
  7. Barenblatt, G. I.; Zel'dovich, Y. B. (1972). "Self-similar solutions as intermediate asymptotics". Annual Review of Fluid Mechanics. 4 (1): 285–312. Bibcode:1972AnRFM...4..285B. doi:10.1146/annurev.fl.04.010172.001441.
  8. Coenen, W.; Rajamanickam, P.; Weiss, A. D.; Sánchez, A. L.; Williams, F. A. (2019). "Swirling flow induced by jets and plumes". Acta Mechanica. 230 (6): 2221–2231. doi:10.1007/s00707-019-02382-2. S2CID   126488392.
  9. Stewartson, K. (1957). "On asymptotic expansions in the theory of boundary layers". Journal of Mathematics and Physics. 36 (1–4): 173–191. doi:10.1002/sapm1957361173.
  10. Libby, P. A.; Fox, H. (1963). "Some perturbation solutions in laminar boundary-layer theory". Journal of Fluid Mechanics. 17 (3): 433–449. doi:10.1017/S0022112063001439. S2CID   123824364.
  11. Giga, M.-H.; Giga, Y.; Saal, J. (2010). Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions. Birkhäuser. ISBN   9780817641733.{{cite book}}: CS1 maint: date and year (link)
  12. Batchelor (2000) [1967]. An Introduction to Fluid Dynamics. Cambridge University Press. p. 189. ISBN   9780521663960.
  13. Chang, Lang-Mann (1986). "Transient Heat Conduction in Semi-Infinite Solids with Temperature Dependent Properties" (PDF). Technical Report BRL-TR-2720. 86. US Army Ballistic Research Laboratory: 30105. Bibcode:1986STIN...8630105C.
  14. 1 2 Dec, John. "Lecture #1: Stagnation Point Heating" (PDF). Aerothermodynamics Course. NASA: 105–106.