The Technological Pedagogical Content Knowledge (TPACK) framework is an educational model that describes the intersections between technology, pedagogy, and content for the effective integration of technology into teaching. TPACK became popular in the early 2000s. [1] [2] [3] [4]
TPACK divides a teacher's contextual knowledge (XK) in teaching into three broad categories: content knowledge (CK), pedagogical knowledge (PK), and technological knowledge (TK). At the intersection of two categories are more specific forms of knowledge: pedagogical content knowledge (PCK), technological content knowledge (TCK), technological pedagogical knowledge (TPK). At the intersection of all three categories is technological pedagogical content knowledge (TPACK). Contextual knowledge also includes information apart from the three categories, such as an awareness of school policies.
Researchers argue that effective technological integration involves an understanding of the relationships between all three forms of knowledge in a teaching context. [5]
In the early 2000s, scholars noted a lack of theory and conceptual frameworks to inform and guide research and teacher preparation in technology integration. [6] The classic definition of PCK proposed by Shulman included one dynamic and complex relationship between two different knowledge bodies: content knowledge and pedagogical knowledge. Shulman defined PCK as the blend between content and pedagogy, highlighting the teacher's comprehension of how topics should be taught according to students' diverse interests and capabilities. [7]
For five years, Mishra & Koehler conducted an experiment to understand educators’ development of rich technology uses as well as helping them develop their teaching with technology. As a result of this work, they arrived at the Technological, Pedagogical, Content Knowledge (TPCK) model in 2008, later renamed to TPACK. [8] [9] The questions of "what the teachers need to know in order to appropriately incorporate technology into their teaching... and how they might develop it" [9] were key to the framework development. In 2019, the Mishra proposed an additional aspect of teacher knowledge, contextual knowledge (XK), which encompasses knowledge of not only the TPACK forms but also organisational and situational constraints, such as school policies and available technologies. [10]
Educators found they needed new skills as new technologies entered the field. Consequently, technology knowledge became an essential feature of teacher knowledge. Scholars proposed different frames about TPACK to promote a particular view, including ways and diverse perspectives on understanding and working with technology in the classroom. [1] [2] [11] [12] [13] [14] TPACK-based research has led to the emergence of a significant literature body (TPACK Newsletter #44, 2021).
As Herring and colleagues described, the historical development of TPACK provided a conceptualization that both graphically and narratively explained what is studied, and presented the key concepts, factors, or variables and the presumed relationships found between them. [15] Additionally, it scaffolds the application of findings to other contexts that theoreticians, researchers, and practitioners continue to examine. [15]
TPACK domains and related subdomains address the complex nature of teaching effectively with appropriate technologies. [9] [16] While the different domains and subdomains can be explored as separate skill concepts, domains and subdomains were conceptualized to work in synergistic reciprocity meaning that the knowledge is not entirely separate indicating the intersectionality of each area. Accordingly, the TPACK model consists of three main domains, each containing one subdomain. The purpose of the subdomains is to unpack the broader domain concept by understanding intersections among the three primary knowledge anchors for the overall framework. The main domains are 1. Technological Content Knowledge (TCK); 2. Pedagogical Content Knowledge (PCK), and 3. Technological Pedagogical Knowledge (TPK). The three subdomains are 1. Technological Knowledge (TK); 2. Content Knowledge (CK); and 3. Pedagogical Knowledge (PK). In 2019, Mishra [10] proposed a revised TPACK diagram to emphasize the context in which technology integration occurs by retitling the outer circle as Contextual Knowledge or XK.
Technological Knowledge (TK) addresses how teachers demonstrate professional knowledge of technology. TK considers what is required for teachers to integrate technology tools and resources into their course content and instructional practice. The technology component of TPaCK in Technology is most beneficial for learning when it brings a change in professional teaching practice [17] [18] and in designs for learning. For teachers, TK not only addresses knowledge about technology but also knowledge of the skills needed to use technology to effectively plan instruction, [16] [19] including with science teachers. [20] [21] [22] [23] [24] TK involves understanding cross-platform applications and capabilities as well as how to configure those applications to realize instructional objectives and student learning outcomes. Content Knowledge (CK) is situated within the following definitional parameters of a teacher's knowledge about a particular subject matter and how it is taught and learned. [25] As Shulman [7] noted, CK would include knowledge of concepts, theories, ideas, organizational frameworks, knowledge of evidence and proof, as well as established practices and approaches toward developing such knowledge." For educators, effective content instruction that engages students in higher-order activities using authentic, real-world examples facilitated through technology is the cornerstone of teaching and learning in the 21st century. Thus, educators must not only be thoughtful in the instructional techniques they use to present content but also strategic in the technology selected to teach the subject matter as it may result in positive or negative results in long-term learning and knowledge retention. Pedagogical Knowledge (PK) addresses how teachers demonstrate professional knowledge of pedagogy. PK refers to the specific knowledge about teaching such as approaches or methods of how teachers teach a particular topic or how to scaffold a concept to the diverse interests and abilities of learners. For teachers and educators, an effective teaching method that engages students in higher-order activities using real-world examples facilitated through different learning styles is the cornerstone of teaching and learning in the current era. Accordingly, educators must be thoughtful in the instructional techniques to teach the subject matter as it may have a great impact on long-term learning and knowledge acquisition. Choosing the right technology to enable higher-order thinking within the content, long-term knowledge retention, and facilitate student learning outcomes are paramount within the CK construct. Finally, Context Knowledge (XK) is the umbrella domain that refers to how teachers contextualize implementation based on the overall teaching and learning context.
A wide variety of strategies have been used to develop educators’ TPACK abilities, such as (a) collaborative, design-based lesson planning; [26] (b) the use of technology mapping, game-based learning, and deep-play [27] [28] (c) scaffolding the design process; [29] [30] and (d) accounting for how teacher's beliefs influence their TPACK. [31] Researchers have found collaborative strategies to be helpful to develop teachers’ TPACK, such as (a) faculty-wide mentoring programs, [32] (b) professional collaboration and teacher talk, [33] (c) collaborative reflection practices, [28] and (d) professional learning communities. [34] [35] Teacher education leaders have used the Theory of Action to identify the critical areas as they plan for the effective integration of TPACK into their teacher education and faculty support programs. [15] [36]
Since its introduction, researchers and professional developers have created a variety of processes and instruments to assess an educator's TPACK, [28] [37] such as self-report measures, open-ended questionnaires, performance assessments, interviews, observations, and more. [38] [39] [40] Widely-used measures such as the Survey of Preservice Teachers’ Knowledge of Teaching and Technology, [41] [42] [43] the TPACK-21 questionnaire, [44] and the TPACK leadership diagnostic tool, [15] [45] have been tested for reliability and validity and applied in a variety of educational settings.
Researchers have made considerable efforts to explore the details of educators’ TPACK through both quantitative [46] and qualitative measures. [47] Qualitative approaches for evaluating TPACK have included classroom observations, [47] the analysis of lesson plans, classroom videos, and interviews. [48] Furthermore, as researchers have sought to better address how the components of XK (including online learning environments and global contexts) influence the development of TPACK, measures of TPACK have begun to include educators’ future intentions to use technology. [49] Additionally, researchers have also considered educators’ self-efficacy alongside TPACK. [50] [51] [52]
The TPACK framework has received a number of criticisms, the majority of which are related to the lack of a precise definition. Similar to Shulman's Pedagogical Content Knowledge (PCK), which serves as a foundation for TPACK, scholars have debated whether TPACK is integrative or transformative leading to varied and nuanced perspectives. [33] Furthermore, scholars have debated precise definitions for the seven knowledge domains associated with the TPACK framework, [53] and what differentiates one domain from another varies widely across studies. [53] [54] These challenges have led to what has been called "fuzzy boundaries" distinguishing TPACK domains [28] [55] [56] [57] [58] that have resulted in even more variations or adaptations of TPACK including TPACK-W for web technologies, G-TPACK for geospatial, TPACK-CT for computational thinking, TPACK-P for TPACK practical, etc. These variations have been considered by some researchers to be misappropriations or conceptual dilution. [59]
A second major area of criticism of TPACK is the lack of reliable assessment instruments, as well as difficulties with existing instruments. Some researchers have cited problems related to participant interpretation of survey items, [52] [55] [56] [60] while others have reported problems with convergence when multiple measures are used. [61] [62] [63]
A third major area of criticism is related to the implications of TPACK for practice. Some scholars argue that the complexity of the framework makes it difficult to operationalize among both researchers and practitioners. [62] Further, as a framework for teacher knowledge, it is not accompanied by specific recommendations or strategies for how to help develop this body of knowledge for teachers. [37] Finally, scholars have noted that is unclear whether the TPACK framework promotes the type of reform-oriented teaching encouraged in new standards and curricula. [64]
An instructional theory is "a theory that offers explicit guidance on how to better help people learn and develop." It provides insights about what is likely to happen and why with respect to different kinds of teaching and learning activities while helping indicate approaches for their evaluation. Instructional designers focus on how to best structure material and instructional behavior to facilitate learning.
A teaching method is a set of principles and methods used by teachers to enable student learning. These strategies are determined partly by the subject matter to be taught, partly by the relative expertise of the learners, and partly by constraints caused by the learning environment. For a particular teaching method to be appropriate and efficient it has to take into account the learner, the nature of the subject matter, and the type of learning it is supposed to bring about.
Science education is the teaching and learning of science to school children, college students, or adults within the general public. The field of science education includes work in science content, science process, some social science, and some teaching pedagogy. The standards for science education provide expectations for the development of understanding for students through the entire course of their K-12 education and beyond. The traditional subjects included in the standards are physical, life, earth, space, and human sciences.
Instructional scaffolding is the support given to a student by an instructor throughout the learning process. This support is specifically tailored to each student; this instructional approach allows students to experience student-centered learning, which tends to facilitate more efficient learning than teacher-centered learning. This learning process promotes a deeper level of learning than many other common teaching strategies.
Pedagogy, most commonly understood as the approach to teaching, is the theory and practice of learning, and how this process influences, and is influenced by, the social, political, and psychological development of learners. Pedagogy, taken as an academic discipline, is the study of how knowledge and skills are imparted in an educational context, and it considers the interactions that take place during learning. Both the theory and practice of pedagogy vary greatly as they reflect different social, political, and cultural contexts.
Open educational resources (OER) are teaching, learning, and research materials intentionally created and licensed to be free for the end user to own, share, and in most cases, modify. The term "OER" describes publicly accessible materials and resources for any user to use, re-mix, improve, and redistribute under some licenses. These are designed to reduce accessibility barriers by implementing best practices in teaching and to be adapted for local unique contexts.
Educational technology is the combined use of computer hardware, software, and educational theory and practice to facilitate learning. When referred to with its abbreviation, "EdTech", it often refers to the industry of companies that create educational technology. In EdTech Inc.: Selling, Automating and Globalizing Higher Education in the Digital Age, Tanner Mirrlees and Shahid Alvi (2019) argue "EdTech is no exception to industry ownership and market rules" and "define the EdTech industries as all the privately owned companies currently involved in the financing, production and distribution of commercial hardware, software, cultural goods, services and platforms for the educational market with the goal of turning a profit. Many of these companies are US-based and rapidly expanding into educational markets across North America, and increasingly growing all over the world."
Technology integration is defined as the use of technology to enhance and support the educational environment. Technology integration in the classroom can also support classroom instruction by creating opportunities for students to complete assignments on the computer rather than with normal pencil and paper. In a larger sense, technology integration can also refer to the use of an integration platform and application programming interface (API) in the management of a school, to integrate disparate SaaS applications, databases, and programs used by an educational institution so that their data can be shared in real-time across all systems on campus, thus supporting students' education by improving data quality and access for faculty and staff.
"Curriculum integration with the use of technology involves the infusion of technology as a tool to enhance the learning in a content area or multidisciplinary setting... Effective technology integration is achieved when students can select technology tools to help them obtain information on time, analyze and synthesize it, and present it professionally to an authentic audience. Technology should become an integral part of how the classroom functions—as accessible as all other classroom tools. The focus in each lesson or unit is the curriculum outcome, not the technology."
Universal Design for Learning (UDL) is an educational framework based on research in the learning theory, including cognitive neuroscience, that guides the development of flexible learning environments and learning spaces that can accommodate individual learning differences.
Culturally relevant teaching is instruction that takes into account students' cultural differences. Making education culturally relevant is thought to improve academic achievement, but understandings of the construct have developed over time Key characteristics and principles define the term, and research has allowed for the development and sharing of guidelines and associated teaching practices. Although examples of culturally relevant teaching programs exist, implementing it can be challenging.
Teacher education or teacher training refers to programs, policies, procedures, and provision designed to equip (prospective) teachers with the knowledge, attitudes, behaviors, approaches, methodologies and skills they require to perform their tasks effectively in the classroom, school, and wider community. The professionals who engage in training the prospective teachers are called teacher educators.
Computer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.
An edublog is a blog created for educational purposes. Edublogs archive and support [[dibu] and teacher learning by facilitating reflection, questioning by self and others, collaboration and by providing contexts for engaging in higher-order thinking. Edublogs proliferated when blogging architecture became more simplified and teachers perceived the instructional potential of blogs as an online resource. The use of blogs has become popular in education institutions including public schools and colleges. Blogs can be useful tools for sharing information and tips among co-workers, providing information for students, or keeping in contact with parents. Common examples include blogs written by or for teachers, blogs maintained for the purpose of classroom instruction, or blogs written about educational policy. Educators who blog are sometimes called edubloggers.
Inquiry-based learning is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions. Inquiry-based learning includes problem-based learning, and is generally used in small-scale investigations and projects, as well as research. The inquiry-based instruction is principally very closely related to the development and practice of thinking and problem-solving skills.
Open education is an educational movement founded on openness, with connections to other educational movements such as critical pedagogy, and with an educational stance which favours widening participation and inclusiveness in society. Open education broadens access to the learning and training traditionally offered through formal education systems and is typically offered through online and distance education. The qualifier "open" refers to the elimination of barriers that can preclude both opportunities and recognition for participation in institution-based learning. One aspect of openness or "opening up" education is the development and adoption of open educational resources in support of open educational practices.
This National Conference is the biennial conference of the Australian Council for Computers in Education (ACCE). The conference opens to anyone who in interested in sharing their digital teaching experiences. The first conference took place in Melbourne, 1983. Between 1983 and 1996, the conference was held annually across Australia. After 1996, the conference became biennial. From 1994, a series of frameworks were launched in Australia to integrate Information and Communication Technology (ICT) into education. Western Australia's 2001 Competency framework for Teachers identified teachers as an important component in developing computer education. In 2010, Education Minister Julia Gillard, proposed an education agenda to provide Australia a better education system. Besides ACCE, there are many organizations and conferences supporting the development of computer education in Australia. Technology in education consists of two major approaches: Learning with technology and learning from technology. Technology in education learning and traditional classroom learning have different focuses and defining features. There are also four types of computer education: Bring your own device(BYOD), blended learning, online learning, and flipped learning.
The ISTE Standards, formerly known as the National Educational Technology Standards (NETS), are standards for the use of technology in teaching and learning. They are published by the International Society for Technology in Education (ISTE), a nonprofit membership association for educators focused on educational technology. They include the ISTE Standards for Students, which list skills and attitudes expected of students. They also include the ISTE Standards for Educators, ISTE Standards for Administrators, ISTE Standards for Coaches and ISTE Standards for Computer Science Educators.
Challenge-based learning (CBL) is a framework for learning while solving real-world Challenges. The framework is collaborative and hands-on, asking all participants to identify Big Ideas, ask good questions, discover and solve Challenges, gain in-depth subject area knowledge, develop 21st-century skills, and share their thoughts with the world.
Open educational practices (OEP) are part of the broader open education landscape, including the openness movement in general. It is a term with multiple layers and dimensions and is often used interchangeably with open pedagogy or open practices. OEP represent teaching and learning techniques that draw upon open and participatory technologies and high-quality open educational resources (OER) in order to facilitate collaborative and flexible learning. Because OEP emerged from the study of OER, there is a strong connection between the two concepts. OEP, for example, often, but not always, involve the application of OER to the teaching and learning process. Open educational practices aim to take the focus beyond building further access to OER and consider how in practice, such resources support education and promote quality and innovation in teaching and learning. The focus in OEP is on reproduction/understanding, connecting information, application, competence, and responsibility rather than the availability of good resources. OEP is a broad concept which can be characterised by a range of collaborative pedagogical practices that include the use, reuse, and creation of OER and that often employ social and participatory technologies for interaction, peer-learning, knowledge creation and sharing, empowerment of learners, and open sharing of teaching practices.
Joyce Hwee Ling Koh is a Singaporean–New Zealand academic, and is professor of higher education at the University of Otago, specialising in educational technology, and improving teacher development. Koh has developed tools and frameworks for teacher assessment which are used internationally.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)