This article needs additional citations for verification .(November 2007) |
Technology trajectory refers to a single branch in the evolution of a technological design of a product/service, with nodes representing separate designs. With Technology trajectory referring to a single branch we do expect the development of new technologies to precede recent uses and advance future technologies. The development of future technologies allows for the innovation of new ideas, research, and much more. It also can be defined as the paths by which innovations in a given field occur.
Movement along the technology trajectory is associated with research and development. Due to the institutionalization of ideas, markets, and professions, technology development can get 'stuck' (locked-in) within one trajectory, and firms and engineers are unable to adapt to ideas and innovation from the outside. Technological trajectory/development may break- out of trajectory and can cause three understandings 1. when technology will lock in into a trajectory, 2.) when technology may break out of lock-in, and 3.) when competing technologies may co-exist in a balance. [1] A lock-in is when a certain technology develops along a certain trajectory allowing the development to get stuck due to certain circumstances. Not all trajectories are permanently locked into a trajectory. [1] Let us take for example the Technological Advancement/Trajectory of Increasing Resource use. In 1929 after a man who worked for the USGS wanted to make sure there were enough materials and technological advancements after the war on metal production. He considered 4 important factors to make sure metal production would be made: Geology, Technology, Economics, and Politics. There are technical factors that go into mining, treatment, and refining. “The history of sulfur extraction and production technology also reflects continuous improvement upon processes developed from other industries to meet changing materials use requirements and societal needs". [2] The process of sulfur extraction is found deep underground or underwater. The Clean Air Act of 1970 made rules for getting sulfur from oil refining, processing of sulfide, ores, and even the combustion of electricity generation. This required technologies to be made in order to coincide with the Clean Air Act.
The continuous improvement of sulfur extraction over the years shows how this technological trajectory/ advancement has developed over the years.
Technology Trajectory doesn't just focus on firms or engineers but it can deal with healthcare, schools, the daily life of everyone, and much more. Technology Trajectory also poses the question of whether innovations are integrated into systems nationally, regionally, or sectorally. This then makes you wonder about the environmental issues and the structure of how Technology trajectory affects everyone. Technology in this day in age is all around us and with that being said we must have a Technology Trajectory of where we want to advance to maintain our ability to take technology beyond our imagination. Technology is shaping how we learn, gather information, move forward, and change. Technology is like a policy because it tells us how we are supposed to do things, and makes some ways of doing things more rational and practical than others.
See also
A paradigm shift, a concept in the philosophy of science introduced and brought into the common lexicon by the American physicist and philosopher Thomas Kuhn, is a fundamental change in the basic concepts and experimental practices of a scientific discipline. Even though Kuhn restricted the use of the term to the natural sciences, the concept of a paradigm shift has also been used in numerous non-scientific contexts to describe a profound change in a fundamental model or perception of events.
The knowledge economy is an economic system in which the production of goods and services is based principally on knowledge-intensive activities that contribute to advancement in technical and scientific innovation. The key element of value is the greater dependence on human capital and intellectual property for the source of the innovative ideas, information and practices. Organisations are required to capitalise this "knowledge" into their production to stimulate and deepen the business development process. There is less reliance on physical input and natural resources. A knowledge-based economy relies on the crucial role of intangible assets within the organisations' settings in facilitating modern economic growth.
Science and technology studies (STS) or science, technology, and society is an interdisciplinary field that examines the creation, development, and consequences of science and technology in their historical, cultural, and social contexts.
Diffusion of innovations is a theory that seeks to explain how, why, and at what rate new ideas and technology spread. Everett Rogers, a professor of communication studies, popularized the theory in his book Diffusion of Innovations; the book was first published in 1962, and is now in its fifth edition (2003). Rogers argues that diffusion is the process by which an innovation is communicated over time among the participants in a social system. The origins of the diffusion of innovations theory are varied and span multiple disciplines.
Technology governance means the governance, i.e., the steering between the different sectors—state, business, and NGOs—of the development of technology. It is the idea of governance within technology and its use, as well as the practices behind them. The concept is based on the notion of innovation and of techno-economic paradigm shifts according to the theories by scholars such as Joseph A. Schumpeter, Christopher Freeman, and Carlota Perez.
Carlota Perez is a British-Venezuelan scholar specialized in technology and socio-economic development. She researches the concept of Techno-Economic Paradigm Shifts and the theory of great surges, a further development of Schumpeter's work on Kondratieff waves. In 2012 she was awarded the Silver Kondratieff Medal by the International N. D. Kondratieff Foundation and in 2021 she was awarded an Honorary Doctorate by Utrecht University.
Technological change (TC) or technological development is the overall process of invention, innovation and diffusion of technology or processes. In essence, technological change covers the invention of technologies and their commercialization or release as open source via research and development, the continual improvement of technologies, and the diffusion of technologies throughout industry or society. In short, technological change is based on both better and more technology.
Giovanni Dosi is Professor of Economics and Director of the Institute of Economics at the Scuola Superiore Sant'Anna in Pisa. He is the Co-Director of the task forces “Industrial Policy” and “Intellectual Property” at the Initiative for Policy Dialogue at Columbia University. Dosi is Continental European Editor of Industrial and Corporate Change. Included in ISI Highly Cited Researchers.
There are several approaches to defining the substance and scope of technology policy.
Richard R. Nelson is an American professor of economics at Columbia University. He is one of the leading figures in the revival of evolutionary economics thanks to his seminal book An Evolutionary Theory of Economic Change (1982) written jointly with Sidney G. Winter. He is also known for his work on industry, economic growth, the theory of the firm, and technical change.
New business development concerns all the activities involved in realizing new business opportunities, including product or service design, business model design, and marketing. When splitting business development into two parts, we have: ‘business’ and ‘development’. The first things that come into mind when looking at business are: economics, finance, managerial activities, competition, prices, marketing, etc. All of these keywords are related to risk and entrepreneurship and clearly indicate the primary scope of the term ‘business development’. Development is very abstract and can be linked with some of the following keywords: technological improvement, cost reduction, general welfare, improved relations, movement in a (positive) direction, etc.
Innovation economics is new and growing field of economic theory and applied and experimental economics that emphasizes innovation and entrepreneurship. It comprises both the application of any type of innovations, especially technological, but not only, into economic use, in classical economics this is the application of customer new technology into economic use; but also it could refer to the field of innovation and experimental economics that refers the new economic science developments that may be considered innovative. In his 1942 book Capitalism, Socialism and Democracy, economist Joseph Schumpeter introduced the notion of an innovation economy. He argued that evolving institutions, entrepreneurs and technological changes were at the heart of economic growth. However, it is only in recent years that "innovation economy," grounded in Schumpeter's ideas, has become a mainstream concept".
Innovation management is a combination of the management of innovation processes, and change management. It refers to product, business process, marketing and organizational innovation. Innovation management is the subject of ISO 56000 series standards being developed by ISO TC 279.
The technological innovation system is a concept developed within the scientific field of innovation studies which serves to explain the nature and rate of technological change. A Technological Innovation System can be defined as ‘a dynamic network of agents interacting in a specific economic/industrial area under a particular institutional infrastructure and involved in the generation, diffusion, and utilization of technology’.
A technological revolution is a period in which one or more technologies is replaced by another novel technology in a short amount of time. It is an era of accelerated technological progress characterized by new innovations whose rapid application and diffusion typically cause an abrupt change in society.
Peak minerals marks the point in time when the largest production of a mineral will occur in an area, with production declining in subsequent years. While most mineral resources will not be exhausted in the near future, global extraction and production has become more challenging. Miners have found ways over time to extract deeper and lower grade ores with lower production costs. More than anything else, declining average ore grades are indicative of ongoing technological shifts that have enabled inclusion of more 'complex' processing – in social and environmental terms as well as economic – and structural changes in the minerals exploration industry and these have been accompanied by significant increases in identified Mineral Reserves.
Transition management is a governance approach that aims to facilitate and accelerate sustainability transitions through a participatory process of visioning, learning and experimenting. In its application, transition management seeks to bring together multiple viewpoints and multiple approaches in a 'transition arena'. Participants are invited to structure their shared problems with the current system and develop shared visions and goals which are then tested for practicality through the use of experimentation, learning and reflexivity. The model is often discussed in reference to sustainable development and the possible use of the model as a method for change.
The concept of technological paradigm is commonly attributed to Giovanni Dosi. The concept is sometimes seen as performing a similar role to the concept of "scientific paradigms", as advanced by Thomas Kuhn.
Technological transitions (TT) can best be described as a collection of theories regarding how technological innovations occur, the driving forces behind them, and how they are incorporated into society. TT draws on a number of fields, including history of science, technology studies, and evolutionary economics. Alongside the technological advancement, TT considers wider societal changes such as "user practices, regulation, industrial networks, infrastructure, and symbolic meaning or culture". Hughes refers to the 'seamless web' where physical artifacts, organizations, scientific communities, and social practices combine. A technological transition occurs when there is a major shift in these socio-technical configurations.
Material criticality is the determination of which materials that flow through an industry or economy are most important to the production process. It is a sub-category within the field of material flow analysis (MFA), which is a method to quantitatively analyze the flows of materials used for industrial production in an industry or economy. MFA is a useful tool to assess what impacts materials used in the industrial process have and how efficiently a given process uses them.