A tensor product network, in artificial neural networks, is a network that exploits the properties of tensors to model associative concepts such as variable assignment. Orthonormal vectors are chosen to model the ideas (such as variable names and target assignments), and the tensor product of these vectors construct a network whose mathematical properties allow the user to easily extract the association from it.
Artificial neural networks (ANN) or connectionist systems are computing systems inspired by the biological neural networks that constitute animal brains. The neural network itself is not an algorithm, but rather a framework for many different machine learning algorithms to work together and process complex data inputs. Such systems "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules. For example, in image recognition, they might learn to identify images that contain cats by analyzing example images that have been manually labeled as "cat" or "no cat" and using the results to identify cats in other images. They do this without any prior knowledge about cats, for example, that they have fur, tails, whiskers and cat-like faces. Instead, they automatically generate identifying characteristics from the learning material that they process.
In mathematics, a tensor is a geometric object that maps in a multi-linear manner geometric vectors, scalars, and other tensors to a resulting tensor. Vectors and scalars which are often used in elementary physics and engineering applications, are considered as the simplest tensors. Vectors from the dual space of the vector space, which supplies the geometric vectors, are also included as tensors. Geometric in this context is chiefly meant to emphasize independence of any selection of a coordinate system.
In computer programming, a variable or scalar is a storage location paired with an associated symbolic name, which contains some known or unknown quantity of information referred to as a value. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.
This article does not cite any sources . (December 2009) (Learn how and when to remove this template message) |
This science article is a stub. You can help Wikipedia by expanding it. |
Unsupervised learning is a branch of machine learning that learns from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data. Alternatives include supervised learning and reinforcement learning.
Canonical may refer to:
In mathematics, the symmetric algebra S(V) on a vector space V over a field K is the free commutative unital associative algebra over K containing V.
A Hopfield network is a form of recurrent artificial neural network popularized by John Hopfield in 1982, but described earlier by Little in 1974. Hopfield nets serve as content-addressable ("associative") memory systems with binary threshold nodes. They are guaranteed to converge to a local minimum and, therefore, may converge to a false pattern rather than the stored pattern. Hopfield networks also provide a model for understanding human memory.
In machine learning and statistics, classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations whose category membership is known. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient. Classification is an example of pattern recognition.
A recurrent neural network (RNN) is a class of artificial neural network where connections between nodes form a directed graph along a temporal sequence. This allows it to exhibit temporal dynamic behavior. Unlike feedforward neural networks, RNNs can use their internal state (memory) to process sequences of inputs. This makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition.
In the field of artificial intelligence, neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic.
In artificial neural networks, the activation function of a node defines the output of that node, or "neuron," given an input or set of inputs. This output is then used as input for the next node and so on until a desired solution to the original problem is found.
Tensor network theory is a theory of brain function that provides a mathematical model of the transformation of sensory space-time coordinates into motor coordinates and vice versa by cerebellar neuronal networks. The theory was developed by Andras Pellionisz and Rodolfo Llinas in the 1980s as a geometrization of brain function using tensors.
In mathematics, the tensor product (TP) model transformation was proposed by Baranyi and Yam as key concept for higher order singular value decomposition of functions. It transforms a function into TP function form if such a transformation is possible. If an exact transformation is not possible, then the method determines a TP function that is an approximation of the given function. Hence, the TP model transformation can provide a trade-off between approximation accuracy and complexity.
In situ adaptive tabulation (ISAT) is an algorithm for the approximation of nonlinear relationships. ISAT is based on multiple linear regressions that are dynamically added as additional information is discovered. The technique is adaptive as it adds new linear regressions dynamically to a store of possible retrieval points. ISAT maintains error control by defining finer granularity in regions of increased nonlinearity. A binary tree search transverses cutting hyper-planes to locate a local linear approximation. ISAT is an alternative to artificial neural networks that is receiving increased attention for desirable characteristics, namely:
There are many types of artificial neural networks (ANN).
In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.
A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order. RNNs have been successful, for instance, in learning sequence and tree structures in natural language processing, mainly phrase and sentence continuous representations based on word embedding. RNNs have first been introduced to learn distributed representations of structure, such as logical terms. Models and general frameworks have been developed in further works since the 90s.
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. The GRU is like a long short-term memory (LSTM) with forget gate but has fewer parameters than LSTM, as it lacks an output gate. GRU's performance on certain tasks of polyphonic music modeling and speech signal modeling was found to be similar to that of LSTM. GRUs have been shown to exhibit even better performance on certain smaller datasets.
An AI accelerator is a class of microprocessor or computer system designed as hardware acceleration for artificial intelligence applications, especially artificial neural networks, machine vision and machine learning. Typical applications include algorithms for robotics, internet of things and other data-intensive or sensor-driven tasks. They are often manycore designs and generally focus on low-precision arithmetic, novel dataflow architectures or in-memory computing capability. A number of vendor-specific terms exist for devices in this category, and it is an emerging technology without a dominant design.
Keras is an open source neural network library written in Python. It is capable of running on top of TensorFlow, Microsoft Cognitive Toolkit, Theano, or PlaidML. Designed to enable fast experimentation with deep neural networks, it focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS, and its primary author and maintainer is François Chollet, a Google engineer. Chollet also is the author of the XCeption deep neural network model.
The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.