Terrestrial Energy

Last updated
Terrestrial Energy
IndustryNuclear Power
Founded2012
HeadquartersOakville, Canada
Key people
Simon Irish (CEO)
Website https://www.terrestrialenergy.com/

Terrestrial Energy is a Canadian nuclear technology company working on Generation IV nuclear technology. [1] It expects to produce cost-competitive, high-temperature thermal energy with zero emissions. The company is developing a 190 MWe Integral Molten Salt Reactor design [2] and is conducting its Pre-Licensing Vendor Design Review [3] with the Canadian Nuclear Safety Commission. [4]

Contents

This is one example of a small modular reactor (SMR) characteristic of Generation IV nuclear reactor designs.

Terrestrial Energy claims two principal advantages over legacy nuclear power plants. First, construction is meant to take 4 years, versus 8-12 for legacy designs. Second, the T-E IMSR plant can be used to generate either electricity or industrial steam. [1]

Relative to other Generation IV designs, T-E’s IMSR uses no unproven engineering concepts, instead leveraging proven technologies in a unique way. This is meant to reduce licensing and timeline risks that have slowed the adoption of other approaches.

History

Alberta, Ontario, New Brunswick and Saskatchewan began jointly working to advance SMR in April 2021. https://www.nextbigfuture.com/2022/08/terrestrial-energy-and-alberta-commercializing-smr-reactor.html

Design

The plant is designed for industrial cogeneration as well as power generation.

The reactor uses molten salt/uranium blend as both fuel and coolant. [5]

Related Research Articles

<span class="mw-page-title-main">Nuclear reactor</span> Device used to initiate and control a nuclear chain reaction

A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nuclear fission is passed to a working fluid, which in turn runs through steam turbines. These either drive a ship's propellers or turn electrical generators' shafts. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of weapons-grade plutonium. As of 2022, the International Atomic Energy Agency reports there are 422 nuclear power reactors and 223 nuclear research reactors in operation around the world.

<span class="mw-page-title-main">Molten salt reactor</span> Type of nuclear reactor cooled by molten material

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a mixture of molten salt with a fissionable material.

<span class="mw-page-title-main">BWX Technologies</span> American industrial company

BWX Technologies, Inc., headquartered in Lynchburg, Virginia is a supplier of nuclear components and fuel to the U.S.

Generation IV reactors are nuclear reactor design technologies that are envisioned as successors of generation III reactors. The Generation IV International Forum (GIF) - an international organization that coordinates the development of generation IV reactors - specifically selected six reactor technologies as candidates for generation IV reactors. The designs target improved safety, sustainability, efficiency, and cost. The first commercial Gen IV plants are not expected before 2040–2050, although the World Nuclear Association in 2015 suggested that some might enter commercial operation before 2030.

<span class="mw-page-title-main">High-temperature gas reactor</span> Type of nuclear reactor that operates at high temperatures as part of normal operation

A high-temperature gas-cooled reactor (HTGR), is a nuclear reactor that uses a graphite moderator with a once-through uranium fuel cycle. The HTGR is a type of high-temperature reactor (HTR) that can conceptually have an outlet temperature of 750 °C (1,380 °F). The reactor core can be either a "prismatic block" or a "pebble-bed" core. The high temperatures enable applications such as process heat or hydrogen production via the thermochemical sulfur–iodine cycle.

<span class="mw-page-title-main">Lead-cooled fast reactor</span> Type of nuclear reactor cooled by molten lead

The lead-cooled fast reactor is a nuclear reactor design that features a fast neutron spectrum and molten lead or lead-bismuth eutectic coolant. Molten lead or lead-bismuth eutectic can be used as the primary coolant because especially lead, and to a lesser degree bismuth have low neutron absorption and relatively low melting points. Neutrons are slowed less by interaction with these heavy nuclei and therefore, help make this type of reactor a fast-neutron reactor. In simple terms, if a neutron hits a particle with a similar mass, it tends to lose kinetic energy. In contrast, if it hits a much heavier atom such as lead, the neutron will "bounce off" without losing this energy. The coolant does, however, serve as a neutron reflector, returning some escaping neutrons to the core. Fuel designs being explored for this reactor scheme include fertile uranium as a metal, metal oxide or metal nitride. Smaller capacity lead-cooled fast reactors can be cooled by natural convection, while larger designs use forced circulation in normal power operation, but will employ natural circulation emergency cooling. No operator interference is required, nor pumping of any kind to cool the residual heat of the reactor after shutdown. The reactor outlet coolant temperature is typically in the range of 500 to 600 °C, possibly ranging over 800 °C with advanced materials for later designs. Temperatures higher than 800 °C are theoretically high enough to support thermochemical production of hydrogen through the sulfur-iodine cycle, although this has not been demonstrated.

<span class="mw-page-title-main">Floating nuclear power plant</span> Nuclear power station on a floating vessel

A floating nuclear power plant is a floating power station that derives its energy from a nuclear reactor. Instead of a stationary complex on land, they consist of a floating structure such as an offshore platform, barge or conventional ship.

<span class="mw-page-title-main">Next Generation Nuclear Plant</span> Cancelled American reactor project

A Next Generation Nuclear Plant (NGNP) is a specific proposed generation IV very-high-temperature reactor (VHTR) that could be coupled to a neighboring hydrogen production facility. It could also produce electricity and supply process heat. Up to 30% of this heat could be used to produce hydrogen via high-temperature electrolysis significantly reducing the cost of the process. The envisioned reactor design is helium-cooled, using graphite-moderated thermal neutrons, and TRISO fueled.

<span class="mw-page-title-main">NuScale Power</span> American nuclear technology company

NuScale Power Corporation is a publicly traded American company that designs and markets small modular reactors (SMRs). It is headquartered in Portland, Oregon. A 50 MWe version of the design was certified by the US Nuclear Regulatory Commission (NRC) in January 2023. NuScale has agreements to build reactors in Idaho in 2029 and 2030.

<span class="mw-page-title-main">Small modular reactor</span> Small nuclear reactors that can be manufactured off-site and transported

Small modular reactors (SMRs) are a proposed class of nuclear fission reactors, smaller than conventional nuclear reactors, which can be built in one location, then shipped, commissioned, and operated at a separate site. The term SMR refers to the size, capacity and modular construction only, not to the reactor type and the nuclear process which is applied. Designs range from scaled down versions of existing designs to generation IV designs. Both thermal-neutron reactors and fast-neutron reactors have been proposed, along with molten salt and gas cooled reactor models.

GE Hitachi Nuclear Energy (GEH) is a provider of advanced reactors and nuclear services. It is headquartered in Wilmington, North Carolina, United States. Established in June 2007, GEH is a nuclear alliance created by General Electric and Hitachi. In Japan, the alliance is Hitachi-GE Nuclear Energy. In November 2015, Jay Wileman was appointed CEO.

Holtec International is a supplier of equipment and systems for the energy industry founded in Mount Laurel, New Jersey and based in Jupiter, Florida, United States. It specializes in the design and manufacture of parts for nuclear reactors. The company sells equipment to manage spent nuclear fuel from nuclear reactors.

<span class="mw-page-title-main">Integral Molten Salt Reactor</span>

The Integral Molten Salt Reactor (IMSR) is a nuclear power plant design targeted at developing a commercial product for the small modular reactor (SMR) market. It employs molten salt reactor technology which is being developed by the Canadian company Terrestrial Energy. It is based closely on the denatured molten salt reactor (DMSR), a reactor design from Oak Ridge National Laboratory. It also incorporates elements found in the SmAHTR, a later design from the same laboratory. The IMSR belongs to the DMSR class of molten salt reactors (MSR) and hence is a "burner" reactor that employs a liquid fuel rather than a conventional solid fuel; this liquid contains the nuclear fuel and also serves as primary coolant.

<span class="mw-page-title-main">ThorCon nuclear reactor</span> Proposed nuclear power plant design

The Thorcon nuclear reactor is a design of a molten salt reactor with a graphite moderator, proposed by the US-based Thorcon company. These nuclear reactors are designed as part of a floating power plant, to be manufactured on an assembly line in a shipyard, and to be delivered via barge to any ocean or major waterway shoreline. The reactors are to be delivered as a sealed unit and never opened on site. All reactor maintenance and fuel processing is done at an off-site location. As of 2022, no reactor of this type has been built. A proposal to build a prototype in Indonesia has been submitted to the IAEA.

<span class="mw-page-title-main">Stable salt reactor</span>

The Stable Salt Reactor (SSR) is a nuclear reactor design under development by Moltex Energy Canada Inc. and its subsidiary Moltex Energy USA LLC, based in Canada, the United States, and the United Kingdom, as well as MoltexFLEX Ltd., based in the United Kingdom.

The BWRX-300 is a design for a small modular nuclear reactor proposed by GE Hitachi Nuclear Energy (GEH). The BWRX-300 would feature passive safety, in that neither external power nor operator action would be required to maintain a safe state, even in extreme circumstances.

Copenhagen Atomics is a Danish molten salt technology company developing mass manufacturable molten salt reactors. The company is pursuing small modular, molten fuel salt, thorium fuel cycle, thermal spectrum, breeder reactors using separated plutonium from spent nuclear fuel as the initial fissile load for the first generation of reactors.

A nuclear microreactor is a plug-and-play type of nuclear reactor which can be easily assembled and transported by road, rail or air. Microreactors are 100 to 1,000 times smaller than conventional nuclear reactors, and when compared with small modular reactors (SMRs), their capacity is between 1 and 20 megawatts whereas SMRs comes in the range from 20 to 300 megawatts. Due to their size, they can be deployed to locations such as isolated military bases or communities affected by natural disasters. It can operate as part of the grid, independent of the grid, or as part of a small grid for electricity generation and heat treatment. They are designed to provide resilient, non-carbon emitting, and independent power in challenging environments. The nuclear fuel source for the majority of the designs is "High-Assay Low-Enriched Uranium", or HALEU.

Last Energy is an American commercial developer of nuclear power plants, established in 2020 by Bret Kugelmass, who is also the founder of the Energy Impact Center, an American research institute.

References

  1. 1 2 Temple, James. "Advanced nuclear finds a more welcome home in Canada than the U.S." MIT Technology Review. Retrieved 11 February 2019.
  2. "Terrestrial signs up BWXT for technical support - World Nuclear News". www.world-nuclear-news.org. Retrieved 11 February 2019.
  3. "Pre-Licensing Vendor Design Review". 3 February 2014. Retrieved 9 February 2021.
  4. Yetisir, Metin. "Recent Developments in Small Modular Reactors in Canada" (PDF).{{cite web}}: CS1 maint: url-status (link)
  5. Wang, Brian (2022-08-30). "Terrestrial Energy and Alberta Commercializing SMR Reactor | NextBigFuture.com" . Retrieved 2022-08-31.