Author | Jack L. Chalker |
---|---|
Language | English |
Genre | Science fiction |
Publisher | Timescape Books |
Publication date | July, 1982 |
Publication place | United States |
Media type | Print (Paperback) |
ISBN | 0-671-44481-6 |
The Identity Matrix is a science fiction novel by American writer Jack L. Chalker, published in 1982 by Timescape Books. The work focuses on the body swap and enemy mine plot devices, as well as a background conflict between two powerful alien races. [1]
In mathematics, the determinant is a scalar-valued function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the corresponding linear map is an isomorphism.
In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unchanged. That is, when f is the identity function, the equality f(x) = x is true for all values of x to which f can be applied.
In linear algebra, the trace of a square matrix A, denoted tr(A), is the sum of the elements on its main diagonal, . It is only defined for a square matrix.
In mathematics, the concept of an inverse element generalises the concepts of opposite and reciprocal of numbers.
In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors.
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.
In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, . In geometry, a diagonal matrix may be used as a scaling matrix, since matrix multiplication with it results in changing scale (size) and possibly also shape; only a scalar matrix results in uniform change in scale.
In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".
In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. Invertible matrices are the same size as their inverse.
In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix. Alternative names for this formula are the matrix inversion lemma, Sherman–Morrison–Woodbury formula or just Woodbury formula. However, the identity appeared in several papers before the Woodbury report.
In mathematics, a matrix of ones or all-ones matrix is a matrix with every entry equal to one. For example:
In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of matrices, and is denoted by the symbol or followed by subscripts corresponding to the dimension of the matrix as the context sees fit. Some examples of zero matrices are
In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context.
In linear algebra, an augmented matrix is a matrix obtained by appending a -dimensional column vector , on the right, as a further column to a -dimensional matrix . This is usually done for the purpose of performing the same elementary row operations on the augmented matrix as is done on the original one when solving a system of linear equations by Gaussian elimination.
In mathematics, an elementary matrix is a square matrix obtained from the application of a single elementary row operation to the identity matrix. The elementary matrices generate the general linear group GLn(F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post-multiplication) represents elementary column operations.
In mathematics, a signature matrix is a diagonal matrix whose diagonal elements are plus or minus 1, that is, any matrix of the form:
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix is an involution if and only if where is the identity matrix. Involutory matrices are all square roots of the identity matrix. This is a consequence of the fact that any invertible matrix multiplied by its inverse is the identity.
A Frobenius matrix is a special kind of square matrix from numerical analysis. A matrix is a Frobenius matrix if it has the following three properties:
In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, with elements or entries arranged in rows and columns, which is used to represent a mathematical object or property of such an object.