The Science Fictional Solar System

Last updated
The Science Fictional Solar System
The Science Fictional Solar System.jpg
Editors Isaac Asimov
Charles G. Waugh
Martin H. Greenberg
CountryUnited States
LanguageEnglish
Genre Science fiction
Publisher Harper & Row
Publication date
1979
Media typePrint
Pages317 p.

The Science Fictional Solar System is a 1979 anthology of science fiction short-stories revolving around the Solar System. Its editors are Isaac Asimov, Charles G. Waugh, and Martin H. Greenberg.

Contents

SettingTitleAuthor
Sun "The Weather on the Sun" Theodore L. Thomas
Mercury "Brightside Crossing" Alan E. Nourse
Venus "Prospector's Special" Robert Sheckley
Earth "Waterclap" Isaac Asimov
Mars "Hop-Friend" Terry Carr
Asteroids "Barnacle Bull" Poul Anderson as Winston P. Sanders
Jupiter "Bridge'" James Blish
Saturn "Saturn Rising" Arthur C. Clarke
Uranus "The Snowbank Orbit" Fritz Leiber
Neptune "One Sunday in Neptune" Alexei Panshin
Pluto "Wait It Out" Larry Niven
Pluto"Nikita Eisenhower Jones" Robert F. Young
Comets "The Comet, the Cairn and the Capsule" Duncan Lunan


Related Research Articles

Oort cloud Theoretical cloud of planetesimals at the far edge of the solar system

The Oort cloud, sometimes called the Öpik–Oort cloud, first described in 1950 by the Dutch astronomer Jan Oort, is a theoretical concept of a cloud of predominantly icy planetesimals proposed to surround the Sun at distances ranging from 2,000 to 200,000 AU. It is divided into two regions: a disc-shaped inner Oort cloud and a spherical outer Oort cloud. Both regions lie beyond the heliosphere and in interstellar space. The Kuiper belt and the scattered disc, the other two reservoirs of trans-Neptunian objects, are less than one thousandth as far from the Sun as the Oort cloud.

Sun Star at the center of the Solar System

The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy mainly as visible light, ultraviolet light, and infrared radiation. It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometres, or 109 times that of Earth. Its mass is about 330,000 times that of Earth; it accounts for about 99.86% of the total mass of the Solar System. Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon and iron.

Solar System The Sun, its planets and their moons

The Solar System is the gravitationally bound system of the Sun and the objects that orbit it, either directly or indirectly. Of the objects that orbit the Sun directly, the largest are the eight planets, with the remainder being smaller objects, the dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly—the natural satellites—two are larger than the smallest planet, Mercury, and one more almost equals it in size.

Solar energy Radiant light and heat from the Sun that is harnessed using a range of technologies

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar water heating, photovoltaics, solar thermal energy, solar architecture, molten salt power plants and artificial photosynthesis.

Solar wind Stream of charged particles released from stars

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, 54Fe and 56Fe, and 58Ni, 60Ni, and 62Ni. Superposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field.

<i>Voyager 1</i> NASA space probe launched in 1977; farthest artificial object from Earth

Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and interstellar space beyond the Sun's heliosphere. Launched 16 days after its twin, Voyager 2, Voyager 1 has been operating for 44 years, 1 month and 26 days as of October 31, 2021 UTC [refresh], and still communicates with the Deep Space Network to receive routine commands and to transmit data to Earth. Real-time distance and velocity data is provided by NASA and JPL. At a distance of 155.03 AU from Earth as of October 27, 2021, it is the most distant artificial object from Earth.

Voyager program Ongoing NASA program to explore the giant planets and outer Solar System via robotic space probes

The Voyager program is an ongoing American scientific program that employs two robotic interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable alignment of Jupiter and Saturn, to fly near them while collecting data for transmission back to Earth. After launch the decision was taken to additionally send Voyager 2 near Uranus and Neptune to collect data for transmission back to Earth.

Timeline of Solar System exploration

This is a timeline of Solar System exploration ordered by date of spacecraft launch. It includes:

<i>Genesis</i> (spacecraft) Fifth mission of the Discovery program; sample return of solar wind particles from interplanetary space

Genesis was a NASA sample-return probe that collected a sample of solar wind particles and returned them to Earth for analysis. It was the first NASA sample-return mission to return material since the Apollo program, and the first to return material from beyond the orbit of the Moon. Genesis was launched on August 8, 2001, and the sample return capsule crash-landed in Utah on September 8, 2004, after a design flaw prevented the deployment of its drogue parachute. The crash contaminated many of the sample collectors. Although most were damaged, some of the collectors were successfully recovered.

Solar System model Illustrates relative position of Sun and planets

Solar System models, especially mechanical models, called orreries, that illustrate the relative positions and motions of the planets and moons in the Solar System have been built for centuries. While they often showed relative sizes, these models were usually not built to scale. The enormous ratio of interplanetary distances to planetary diameters makes constructing a scale model of the Solar System a challenging task. As one example of the difficulty, the distance between the Earth and the Sun is almost 12,000 times the diameter of the Earth.

Heliosphere Region of space dominated by the Sun

The heliosphere is the magnetosphere, astrosphere and outermost atmospheric layer of the Sun. It takes the shape of a vast, bubble-like region of space. In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium. The "bubble" of the heliosphere is continuously "inflated" by plasma originating from the Sun, known as the solar wind. Outside the heliosphere, this solar plasma gives way to the interstellar plasma permeating the Milky Way. As part of the interplanetary magnetic field, the heliosphere shields the Solar System from a significant amount of cosmic rays, including hazardous ionizing radiation. Its name was likely coined by Alexander J. Dessler, who is credited with first use of the word in scientific literature in 1967. The scientific study of the heliosphere is heliophysics, which includes space weather and space climate.

Eugene Parker American solar astrophysicist

Eugene Newman Parker is an American solar astrophysicist who—in the mid-1950s—developed the theory of the supersonic solar wind and predicted the Parker spiral shape of the solar magnetic field in the outer Solar System. In 1987, Parker proposed that the solar corona might be heated by myriad tiny "nanoflares", miniature brightenings resembling solar flares that would occur all over the surface of the Sun.

Solar Orbiter European solar observatory studying the Suns heliosphere; medium-class mission in the ESA Science Programme

The Solar Orbiter (SolO) is a Sun-observing satellite, developed by the European Space Agency (ESA). SolO is intended to perform detailed measurements of the inner heliosphere and nascent solar wind, and perform close observations of the polar regions of the Sun, which is difficult to do from Earth, both serving to answer the question "How does the Sun create and control the heliosphere?"

Formation and evolution of the Solar System Formation of the Solar System by gravitational collapse of a molecular cloud and subsequent geological history

The formation and evolution of the Solar System began about 4.5 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

Small Solar System body Object in the Solar System

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies' ".

Heliophysics Science of the heliosphere

Heliophysics is the physics of the Sun and its connection with the Solar System. NASA defines heliophysics as "(1) the comprehensive new term for the science of the Sun - Solar System Connection, (2) the exploration, discovery, and understanding of Earth's space environment, and (3) the system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun."

Parker Solar Probe NASA robotic space probe of the outer corona of the Sun

The Parker Solar Probe is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph), or 0.064% the speed of light.

Planetary science Science of planets and planetary systems

Planetary science or, more rarely, planetology, is the scientific study of planets, moons, and planetary systems and the processes that form them. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, originally growing from astronomy and earth science, but which now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

NASA's Solar Terrestrial Probes program (STP) is a series of missions focused on study the Sun-Earth system. It is part of NASA's Heliophysics Science Division within the Science Mission Directorate.