![]() Hardcover edition | |
Author | Leonard Susskind, George Hrabovsky |
---|---|
Language | English |
Genre | Popular science |
Publisher | Basic Books |
Publication date | January 29, 2013 |
Publication place | United States |
Media type | Print, e-book, audiobook |
Pages | 256 pp. |
ISBN | 978-0465028115 |
The Theoretical Minimum: What You Need to Know to Start Doing Physics is a popular science book by Leonard Susskind and George Hrabovsky. The book was initially published on January 29, 2013 by Basic Books. [1] [2] [3]
The Theoretical Minimum is a book and a Stanford University-based continuing-education lecture series, which became a popular YouTube-featured content. The series commenced with What You Need to Know (above) reissued under the title Classical Mechanics: The Theoretical Minimum.
The series presently stands at four books (as of early 2023) covering the first four of six core courses devoted to: classical mechanics, quantum mechanics, special relativity and classical field theory, general relativity, cosmology, and statistical mechanics. Videos for all of these courses are available online. In addition, Susskind has made available video lectures over a range of supplement subject areas including: advanced quantum mechanics, the Higgs boson, quantum entanglement, string theory, and black holes. The full series delivers over 100 lectures amounting to something on the order of 200 hours of content, with some of the individual lectures having received over a million YouTube views.
The book is a mathematical introduction to various theoretical physics concepts, such as principle of least action, Lagrangian mechanics, Hamiltonian mechanics, Poisson brackets, and electromagnetism. [3] It is the first book in a series called The Theoretical Minimum, based on Stanford Continuing Studies courses taught by world renowned physicist Leonard Susskind. The courses collectively teach everything required to gain a basic understanding of each area of modern physics, including much of the fundamental mathematics.
The book, also published in 2014 by Penguin Books under the title Classical Mechanics: The Theoretical Minimum ( ISBN 978-0141976228), is complemented by video recordings of the complete lectures which are available online. There is also a supplemental website for the book.
The second book in the series, by Leonard Susskind and Art Friedman, was published in 2014 by Basic Books under the title Quantum Mechanics: The Theoretical Minimum ( ISBN 978-0465062904). Video recordings of the complete lectures are available online.
The third book in the series, by Leonard Susskind and Art Friedman, was published in 2017. This covers special relativity and classical field theory.
The fourth book in the series, by Leonard Susskind and André Cabannes, was published in January 2023. [4] This covers the general theory of relativity.
Lectures in the remaining two courses, on the subjects of:
are available online as video recordings, or in written notes
Further lecture courses in the Theoretical Minimum series have been delivered by Susskind, on these subjects (or with these titles):
These are also available online as video recordings.
In physics, the fundamental interactions or fundamental forces are interactions in nature that appear not to be reducible to more basic interactions. There are four fundamental interactions known to exist:
Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist.
The following outline is provided as an overview of and topical guide to physics:
The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.
Leonard Susskind is an American theoretical physicist, Professor of theoretical physics at Stanford University and founding director of the Stanford Institute for Theoretical Physics. His research interests are string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.
In physics, a unified field theory (UFT) is a type of field theory that allows all fundamental forces and elementary particles to be written in terms of a single type of field. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields. Furthermore, according to quantum field theory, particles are themselves the quanta of fields. Examples of different fields in physics include vector fields such as the electromagnetic field, spinor fields whose quanta are fermionic particles such as electrons, and tensor fields such as the metric tensor field that describes the shape of spacetime and gives rise to gravitation in general relativity. Unified field theory attempts to organize these fields into a single mathematical structure.
The Fabric of the Cosmos: Space, Time, and the Texture of Reality (2004) is the second book on theoretical physics, cosmology, and string theory written by Brian Greene, professor and co-director of Columbia's Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP).
Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.
V. Balakrishnan is an Indian theoretical physicist, who has worked in a number of fields and areas, including particle physics, many-body theory, the mechanical behavior of solids, dynamical systems, stochastic processes, and quantum dynamics. He is an accomplished researcher who has made important contributions to the theory of anelasticity, continuous-time random walks, and recurrences in dynamical systems.
Sean Michael Carroll is an American theoretical physicist who specializes in quantum mechanics, cosmology, and the philosophy of science. He is the Homewood Professor of Natural Philosophy at Johns Hopkins University. He was formerly a research professor at the Walter Burke Institute for Theoretical Physics at the California Institute of Technology (Caltech) department of physics. He also is currently an external professor at the Santa Fe Institute, and he has been a contributor to the physics blog Cosmic Variance, where he has published in scientific journals such as Nature as well as other publications, including The New York Times, Sky & Telescope, and New Scientist. He is known for his atheism, his vocal critique of theism and defence of naturalism. He is considered a prolific public speaker and science popularizer. In 2007, Carroll was named NSF Distinguished Lecturer by the National Science Foundation.
In physics, a quantum state space is an abstract space in which different "positions" represent not literal locations, but rather quantum states of some physical system. It is the quantum analog of the phase space of classical mechanics.
Carl Richard Hagen is a professor of particle physics at the University of Rochester. He is most noted for his contributions to the Standard Model and Symmetry breaking as well as the 1964 co-discovery of the Higgs mechanism and Higgs boson with Gerald Guralnik and Tom Kibble (GHK). As part of Physical Review Letters 50th anniversary celebration, the journal recognized this discovery as one of the milestone papers in PRL history. While widely considered to have authored the most complete of the early papers on the Higgs theory, GHK were controversially not included in the 2013 Nobel Prize in Physics.
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.
The Course of Theoretical Physics is a ten-volume series of books covering theoretical physics that was initiated by Lev Landau and written in collaboration with his student Evgeny Lifshitz starting in the late 1930s.
The Cosmic Landscape is a non-fiction popular science book on the anthropic principle and string theory landscape. It is written by theoretical physicist Leonard Susskind. The book was initially published by Little, Brown and Company on December 12, 2005.
The Feynman Lectures on Physics is a physics textbook based on a great number of lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1964. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.
Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is considered as a superfluid or as a Bose–Einstein condensate (BEC).
Edward Henry Farhi is a physicist working on quantum computation as a principal scientist at Google. In 2018 he retired from his position as the Cecil and Ida Green Professor of Physics at the Massachusetts Institute of Technology. He was the director of the Center for Theoretical Physics at MIT from 2004 until 2016. He made contributions to particle physics, general relativity and astroparticle physics before turning to his current interest, quantum computation.
Jeffrey Robert Forshaw is a British particle physicist with a special interest in quantum chromodynamics (QCD): the study of the behaviour of subatomic particles, using data from the HERA particle accelerator, Tevatron particle accelerator and the Large Hadron Collider (LHC) at CERN. Since 2004 he has been professor of particle physics in the School of Physics and Astronomy at the University of Manchester.