Thermomechanical generator

Last updated
Freebody diagram; modeling the interaction of the piston with the case TMG freebody1.jpg
Freebody diagram; modeling the interaction of the piston with the case

The Harwell TMG Stirling engine, an abbreviation for "Thermo-Mechanical Generator", was invented in 1967 by E. H. Cooke-Yarborough at the Harwell Labs of the United Kingdom Atomic Energy Authority. [1] [2] [3] [4] It was intended to be a remote electrical power source with low cost and very long life, albeit by sacrificing some efficiency. The TMG (model TMG120) was at one time the only Stirling engine sold by a manufacturer, namely HoMach Systems Ltd., England. [5]

Stirling engine sterlingmotor

A Stirling engine is a heat engine that is operated by a cyclic compression and expansion of air or other gas at different temperatures, such that there is a net conversion of heat energy to mechanical work. More specifically, the Stirling engine is a closed-cycle regenerative heat engine with a permanently gaseous working fluid. Closed-cycle, in this context, means a thermodynamic system in which the working fluid is permanently contained within the system, and regenerative describes the use of a specific type of internal heat exchanger and thermal store, known as the regenerator. Strictly speaking, the inclusion of the regenerator is what differentiates a Stirling engine from other closed cycle hot air engines.

Edmund ("Ted") Harry Cooke-Yarborough was the lead designer of the Harwell Dekatron, one of the world's early electronic computers and also a pioneer of radar.

United Kingdom Atomic Energy Authority UK government research organisation responsible for the development of nuclear fusion power

The United Kingdom Atomic Energy Authority (UKAEA) is a UK government research organisation responsible for the development of nuclear fusion power. It is an executive non-departmental public body of the Department for Business, Energy and Industrial Strategy (BEIS).

Description

The engine has near isothermal cylinders because 1) the heater area covers the entire cylinder end, 2) it is a short stroke device, with wide shallow cylinders, yielding a high surface area to volume ratio, 3) the average thickness of the gas space is about 0.1 cm, and 4) the working fluid is Helium, a gas having good thermal properties for Stirling engines.

Cylinder (engine) central working part of a reciprocating engine or pump, the space in which a piston travels, often equipped with a cylinder liner

A cylinder is the central working part of a reciprocating engine or pump, the space in which a piston travels. Multiple cylinders are commonly arranged side by side in a bank, or engine block, which is typically cast from aluminum or cast iron before receiving precision machine work. Cylinders may be sleeved or sleeveless. A sleeveless engine may also be referred to as a "parent-bore engine".

Surface area measure of the total area that occupies the surface of a solid object

The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra, for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces. This definition of surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration.

Volume Quantity of three-dimensional space

Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance or shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre. The volume of a container is generally understood to be the capacity of the container; i. e., the amount of fluid that the container could hold, rather than the amount of space the container itself displaces. Three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, and circular shapes can be easily calculated using arithmetic formulas. Volumes of complicated shapes can be calculated with integral calculus if a formula exists for the shape's boundary. One-dimensional figures and two-dimensional shapes are assigned zero volume in the three-dimensional space.

The engine's displacer also has very low losses. These low-loss operating characteristics simplify the engine analysis, compared to more conventional Stirling engines. [5] :113

The design has many advantages over conventional Stirling engines. The simplicity of the heater greatly reduces the cost by allowing the TMG to avoid the need for a brazed tubular or finned heater, which can account for 40% of the cost of a conventional Stirling engine. [6] The heat exchangers for the heater and cooler are mechanically trivial. The regenerator is a simple annulus, referred to as a "flat plate". Along with the cylinder wall and the displacer, there are a total of four regenerating surfaces. The TMG is a free piston engine. There are no rolling bearings or sliding seals, thus there is very little friction or wear. The working space is hermetically sealed, allowing it to contain pressurized helium gas for many thousands of hours.

Brazing high-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, the filler metal having a lower melting point than the adjoining metal.

Bearing (mechanical) machine element which constrains relative movement to the desired motion and reduces friction between moving parts

A bearing is a machine element that constrains relative movement to the desired motion and reduces friction between moving parts. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Most bearings facilitate the desired motion by minimizing friction. Bearings are classified broadly according to the type of operation, the motions allowed, or to the directions of the loads (forces) applied to the parts.

Cylinder seal form of seals

A cylinder seal is a small round cylinder, typically about one inch in length, engraved with written characters or figurative scenes or both, used in ancient times to roll an impression onto a two-dimensional surface, generally wet clay. Cylinder seals were invented around 3500 BC in the Near East, at the contemporary sites of Uruk in southern Mesopotamia and slightly later at Susa in south-western Iran during the Proto-Elamite period, and they follow the development of stamp seals in the Halaf culture or slightly earlier. They are linked to the invention of the latter’s cuneiform writing on clay tablets. They were used as an administrative tool, a form of signature, as well as jewelry and as magical amulets; later versions would employ notations with Mesopotamian cuneiform. In later periods, they were used to notarize or attest to multiple impressions of clay documents. Graves and other sites housing precious items such as gold, silver, beads, and gemstones often included one or two cylinder seals, as honorific grave goods.

The displacer is a stainless steel can, 27 cm in diameter. It is suspended by a low-loss planer metal spring centered in a 27.4 cm diameter cylinder. The 2 mm radial clearance is divided into two concentric annular gaps by a thin, open-ended cylinder, which is fixed to the engine's cylinder. This annulus acts as the regenerator, which is much less costly than a wire-mesh type.

Stainless steel steel alloy resistant to corrosion

In metallurgy, stainless steel, also known as inox steel or inox from French inoxydable (inoxidizable), is a steel alloy, with a minimum of 10.5% chromium content by mass and a maximum of 1.2% carbon by mass.

Spring (device) elastic device

A spring is an elastic object that stores mechanical energy. Springs are typically made of spring steel. There are many spring designs. In everyday use, the term often refers to coil springs.

Annulus (mathematics) geometric surface defined by two concentric circles

In mathematics, an annulus is a ring-shaped object, a region bounded by two concentric circles. The adjectival form is annular.

The engine is a "free-cylinder" design, in which the entire engine is mounted on springs and allowed to vibrate slightly. This allows the displacer to be driven by positive feedback from the motion of the power piston and the magnets in the linear-alternator magnets, which have a combined weight of 10 kg.

Linear alternator

A linear alternator is essentially a linear motor used as an electrical generator.

Engine ParameterHoMach TMG 120 Spec
Indicated power170 W
Shaft power150 W
Heat input1500 W
Thermal to mechanical efficiency10%
Engine frequency110 Hz
charge Pressure0.2 MPa
Displacer diameter26.0 cm
displacer stroke0.2 cm
Displacer swept volume110 cm³
Power piston diaphragm outer diameter35.2 cm
Power piston diaphragm stroke0.152 cm
Power piston diaphragm swept volume110 cm³
Phase angle~90 degrees
Moving mass (Power piston and alternator magnets)10 kg
Total engine mass~80 kg
Operating lifeover 90000 hours
Helium replenishment (7 liters, at unknown pressure)every 22500 hours on average

[5] :109

The unique power piston was invented by Cooke-Yarborough, and is called an "articulated diaphragm". It consists of a stainless steel annulus, with an outer diameter of 35 cm and an inner diameter of 26 cm. This annulus is clamped to the engine on the outer edge by two flexible rubber o-rings, and on the inner edge it is similarly clamped, in this case to a rigid center hub that makes up the piston's center. The o-rings flex but do not slide, thus no lubricant is needed and there is negligible wear in the entire machine.

The compression space is located between the power-piston hub and the displacer, and this space is cooled by direct conduction through the power piston. A developmental model of the TMG contained a double articulated diaphragm containing cooling water, which was pumped by a thermosyphon. The depth of the compression space varies from 0.2 to 2.7 mm, as governed by the 2 mm displacer stroke and the 1.5 mm power piston stroke moving 90 degrees out of phase.

The TMG engine successfully overcomes many of the economic and mechanical difficulties common in conventional Stirling engines. However, there are some limitations of this design. The simple, low-cost annular regenerator is inefficient compared to other types, (and this contributes to this engine's somewhat low thermal efficiency of only 10%). The mechanical limitations of the articulated diaphragm only allow a maximum stroke of an estimated 3 mm. These properties limit the maximum obtainable power to about 500 - 1000 Watts from an engine of this design. [5] :195 Nevertheless, it is rare for a low-cost Stirling engine to obtain this high level of reliability and operating life, which can only be attributed to the ingenuity of the design.

Related Research Articles

Reciprocating engine Engine utilising one or more reciprocating pistons.

A reciprocating engine, also often known as a piston engine, is typically a heat engine that uses one or more reciprocating pistons to convert pressure into a rotating motion. This article describes the common features of all types. The main types are: the internal combustion engine, used extensively in motor vehicles; the steam engine, the mainstay of the Industrial Revolution; and the niche application Stirling engine. Internal combustion engines are further classified in two ways: either a spark-ignition (SI) engine, where the spark plug initiates the combustion; or a compression-ignition (CI) engine, where the air within the cylinder is compressed, thus heating it, so that the heated air ignites fuel that is injected then or earlier.

Four-stroke engine engine

A four-strokeengine is an internal combustion (IC) engine in which the piston completes four separate strokes while turning the crankshaft. A stroke refers to the full travel of the piston along the cylinder, in either direction. The four separate strokes are termed:

  1. Intake: Also known as induction or suction. This stroke of the piston begins at top dead center (T.D.C.) and ends at bottom dead center (B.D.C.). In this stroke the intake valve must be in the open position while the piston pulls an air-fuel mixture into the cylinder by producing vacuum pressure into the cylinder through its downward motion. The piston is moving down as air is being sucked in by the downward motion against the piston.
  2. Compression: This stroke begins at B.D.C, or just at the end of the suction stroke, and ends at T.D.C. In this stroke the piston compresses the air-fuel mixture in preparation for ignition during the power stroke (below). Both the intake and exhaust valves are closed during this stage.
  3. Combustion: Also known as power or ignition. This is the start of the second revolution of the four stroke cycle. At this point the crankshaft has completed a full 360 degree revolution. While the piston is at T.D.C. the compressed air-fuel mixture is ignited by a spark plug or by heat generated by high compression, forcefully returning the piston to B.D.C. This stroke produces mechanical work from the engine to turn the crankshaft.
  4. Exhaust: Also known as outlet. During the exhaust stroke, the piston, once again, returns from B.D.C. to T.D.C. while the exhaust valve is open. This action expels the spent air-fuel mixture through the exhaust valve.
Robert Stirling clergyman, engineer, inventor of the Stirling engine

The Reverend Dr Robert Stirling was a Scottish clergyman and engineer. He invented the Stirling engine and was in 2014 inducted into the Scottish Engineering Hall of Fame.

Stirling cycle thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer

The Stirling cycle is a thermodynamic cycle that describes the general class of Stirling devices. This includes the original Stirling engine that was invented, developed and patented in 1816 by Robert Stirling with help from his brother, an engineer.

Gnome Monosoupape rotary 9-cylinder aircraft engine

The Monosoupape, was a rotary engine design first introduced in 1913 by Gnome Engine Company. It used a clever arrangement of internal transfer ports and a single pushrod-operated exhaust valve to replace a large number of moving parts found on more conventional rotary engines, and made the Monosoupape engines some of the most reliable of the era. British aircraft designer Thomas Sopwith described the Monosoupape as "one of the greatest single advances in aviation".

Ericsson cycle

The Ericsson cycle is named after inventor John Ericsson who designed and built many unique heat engines based on various thermodynamic cycles. He is credited with inventing two unique heat engine cycles and developing practical engines based on these cycles. His first cycle is now known as the closed Brayton cycle, while his second cycle is what is now called the Ericsson cycle. Ericsson is one of the few who built open-cycle engines, but he also built closed-cycle ones.

Under the Whyte notation for the classification of steam locomotive wheel arrangements, a 2-10-10-2 is a locomotive with two leading wheels, two sets of ten driving wheels, and a pair of trailing wheels.

Hydraulic brake

A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism.

A steam diesel hybrid locomotive is a railway locomotive with a piston engine which could run on either steam from a boiler or diesel fuel. Examples were built in the United Kingdom, Soviet Union and Italy but the relatively high cost of fuel oil meant that the designs were not pursued.

Vacuum servo

A vacuum servo is a component used on motor vehicles in their braking system, to provide assistance to the driver by decreasing the braking effort. In the US it is commonly called a brake booster.

The US Rider-Ericsson Engine Company was the successor of the DeLamater Iron Works and the Rider Engine Company, having bought from both companies their extensive plants and entire stocks of engines and patterns, covering all styles of Rider and Ericsson hot air pumping engines brought out by both of the old companies since 1844, excepting the original Ericsson engine, the patterns of which were burned in the DeLameter fire of 1888.

Free-piston engine

A free-piston engine is a linear, 'crankless' internal combustion engine, in which the piston motion is not controlled by a crankshaft but determined by the interaction of forces from the combustion chamber gases, a rebound device and a load device.

Vacuum engine

A vacuum engine derives its force from air pressure against one side of the piston, which has a partial vacuum on the other side of it. At the beginning of an outstroke, a valve in the head of the cylinder opens and admits a charge of burning gas and air, which is trapped by the closing of the valve and expands. Towards the end of the stroke the charge comes into contact with a water- or air-cooled part of the cylinder and is chilled, causing a sudden drop in pressure sufficient to suck the piston – which is open towards the crank – back on the return stroke. The valve opens again in time for the piston to expel the burnt gases before the next outstroke begins.

Pratt & Whitney R-1860 Hornet B 575 hp radial aircraft engine

The Pratt & Whitney R-1860 Hornet B was a relatively uncommon aircraft engine. It was a development of Pratt & Whitney's earlier R-1690 Hornet and was basically similar, but enlarged in capacity from 1,690 to 1,860 cubic inches (30.5 L). Cylinder bore was increased by 1/8" and the crankshaft stroke by 3/8". Both engines were air-cooled radial engines, with a single row of nine cylinders.

Applications of the Stirling engine

Applications of the Stirling engine range from mechanical propulsion to heating and cooling to electrical generation systems. A Stirling engine is a heat engine operating by cyclic compression and expansion of air or other gas, the "working fluid", at different temperature levels such that there is a net conversion of heat to mechanical work. The Stirling cycle heat engine can also be driven in reverse, using a mechanical energy input to drive heat transfer in a reversed direction.

Körting Hannover AG is a long-standing industrial engineering company in Hanover.

South African Class MA 2-6-6-0 class of 1 South African Mallet locomotive

The South African Railways Class MA 2-6-6-0 of 1909 was a steam locomotive from the pre-Union era in the Natal Colony.

Return connecting rod engine

A return connecting rod, return piston rod or double piston rod engine or back-acting engine is a particular layout for a steam engine.

Lorraine 14A Antarès

The Lorraine 14A Antarès was a French 14-cylinder radial aero engine built and used in the 1930s. It was rated in the 370 kW (500 hp) range.

References

  1. GB 1252258,"Stirling-motor"
  2. GB 1397548,"Stirling cycle heat engines"
  3. GB 1539034,"Resilient coupling devices"
  4. GB 2136087,"Annular Spring"
  5. 1 2 3 4 Colin D. West (1986). Principles and Applications of Stirling Engines . ISBN   0-442-29237-6. p. 195, 113, 109, 195
  6. Clifford.M.Hargreaves (1991). The Philips Stirling Engine. ISBN   0-444-88463-7.