Thomas Cremer | |
---|---|
Born | Miesbach, Germany | 7 July 1945
Nationality | German |
Scientific career | |
Fields | genetics |
Institutions | Institute of Anthropology and Human Genetics LMU Munich |
Thomas Cremer (born 7 July 1945 in Miesbach, Germany ), is a German professor of human genetics and anthropology with a main research focus on molecular cytogenetics and 3D/4D analyses of nuclear structure studied by fluorescence microscopy including super-resolution microscopy and live cell imaging. Thomas Cremer is the brother of the German physicist Christoph Cremer and Georg Cremer, Secretary General of the German Caritas Association.
Thomas Cremer was raised in Aachen. He studied medicine at the Human Medical School, Albert Ludwigs University of Freiburg, where he graduated in 1970 and received his doctoral degree in 1973. From 1974-1978 he was leader of a research group at the Institute of Anthropology and Human Genetics, University of Freiburg followed by a fellowship as research associate at the University of California, Irvine (1978) in the group of M.W. Berns. From 1978-1996 he headed an independent research group at the Institute of Anthropology and Human Genetics, University of Heidelberg. In 1986 he received a Heisenberg scholarship of the Deutsche Forschungsgemeinschaft combined with a position as visiting professor at the Yale University, New Haven, Connecticut in the group of Laura Manuelidis and David C. Ward. From 1996-2010 he held the position of a Full Professor, Chair of Anthropology and Human Genetics in the Faculty of Biology at the Ludwig Maximilian University of Munich. Thomas Cremer is corresponding member of the Academy of Sciences Heidelberg (2001) and member of the German Academy of Sciences Leopoldina (2006). Since his retirement 10/2010 he has continued several research projects at the LMU.
Thomas Cremer was an early supporter of the idea that higher order chromatin arrangement and the architecture of the nucleus are essential for cardinal nuclear functions. Spatial organization of chromatin, now considered as the highest level of epigenetic gene regulation, has been the focus of his research since the early 70's. Together with his brother Christoph Cremer he pioneered laser-UV-microirradiation experiments that indirectly implied a territorial organization of chromosomes in the interphase nucleus. This finding led Thomas Cremer to his concept of a new field of cytogenetic research, called by him as interphase cytogenetics. Realization of interphase cytogenetics was achieved during the 1980s where T. Cremer made major contributions to the development of in situ hybridization techniques to visualize normal and aberrant chromosomes and chromosomal subregions directly in the cell nucleus and provided direct evidence for chromosome territories (CTs). During the 1990s he realized together with P. Lichter the concept of comparative genomic hybridization to metaphase chromosomes and to a matrix with DNA spots representing specific genomic sites. During the late 1990s until now his laboratory has made major achievements in 3D multicolor FISH allowing the simultaneous visualization of all human chromosomes in human cells. In addition, he developed methods to visualize individual CTs and nuclear subcompartments to study their dynamics in living cells. T. Cremer has achieved major insight to compare nuclear phenotypes in a variety of species, ranging from primates, birds to the micro- and macronucleus of ciliates with the goal to classify universally valid, species and cell-type specific normal features of nuclear architecture and distinguish them from disease correlated features.
The cell nucleus is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, have no nuclei, and a few others including osteoclasts have many. The main structures making up the nucleus are the nuclear envelope, a double membrane that encloses the entire organelle and isolates its contents from the cellular cytoplasm; and the nuclear matrix, a network within the nucleus that adds mechanical support.
A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are the histones. These proteins, aided by chaperone proteins, bind to and condense the DNA molecule to maintain its integrity. These chromosomes display a complex three-dimensional structure, which plays a significant role in transcriptional regulation.
Chromatin is a complex of DNA and protein found in eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important roles in reinforcing the DNA during cell division, preventing DNA damage, and regulating gene expression and DNA replication. During mitosis and meiosis, chromatin facilitates proper segregation of the chromosomes in anaphase; the characteristic shapes of chromosomes visible during this stage are the result of DNA being coiled into highly condensed chromatin.
In cell biology, mitosis is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is maintained. Therefore, mitosis is also known as equational division. In general, mitosis is preceded by S phase of interphase and is often followed by telophase and cytokinesis; which divides the cytoplasm, organelles and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis altogether define the mitotic (M) phase of an animal cell cycle—the division of the mother cell into two daughter cells genetically identical to each other.
Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there are two distinct types of cell division: a vegetative division (mitosis), producing daughter cells genetically identical to the parent cell, and a cell division that produces haploid gametes for sexual reproduction (meiosis), reducing the number of chromosomes from two of each type in the diploid parent cell to one of each type in the daughter cells. In cell biology, mitosis (/maɪˈtoʊsɪs/) is a part of the cell cycle, in which, replicated chromosomes are separated into two new nuclei. Cell division gives rise to genetically identical cells in which the total number of chromosomes is maintained. In general, mitosis is preceded by the S stage of interphase and is often followed by telophase and cytokinesis; which divides the cytoplasm, organelles, and cell membrane of one cell into two new cells containing roughly equal shares of these cellular components. The different stages of mitosis all together define the mitotic (M) phase of animal cell cycle—the division of the mother cell into two genetically identical daughter cells. Meiosis results in four haploid daughter cells by undergoing one round of DNA replication followed by two divisions. Homologous chromosomes are separated in the first division, and sister chromatids are separated in the second division. Both of these cell division cycles are used in the process of sexual reproduction at some point in their life cycle. Both are believed to be present in the last eukaryotic common ancestor.
Prophase is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin reticulum and the disappearance of the nucleolus.
A karyotype is the general appearance of the complete set of chromosomes in the cells of a species or in an individual organism, mainly including their sizes, numbers, and shapes. Karyotyping is the process by which a karyotype is discerned by determining the chromosome complement of an individual, including the number of chromosomes and any abnormalities.
Cytogenetics is essentially a branch of genetics, but is also a part of cell biology/cytology, that is concerned with how the chromosomes relate to cell behaviour, particularly to their behaviour during mitosis and meiosis. Techniques used include karyotyping, analysis of G-banded chromosomes, other cytogenetic banding techniques, as well as molecular cytogenetics such as fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH).
Telophase is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase are reversed. As chromosomes reach the cell poles, a nuclear envelope is re-assembled around each set of chromatids, the nucleoli reappear, and chromosomes begin to decondense back into the expanded chromatin that is present during interphase. The mitotic spindle is disassembled and remaining spindle microtubules are depolymerized. Telophase accounts for approximately 2% of the cell cycle's duration.
Theodor Heinrich Boveri was a German zoologist, comparative anatomist and co-founder of modern cytology. He was notable for the first hypothesis regarding cellular processes that cause cancer, and for describing chromatin diminution in nematodes. Boveri was married to the American biologist Marcella O'Grady (1863–1950). Their daughter Margret Boveri (1900–1975) became one of the best-known journalists in post-World War II Germany.
In biology, the nuclear matrix is the network of fibres found throughout the inside of a cell nucleus after a specific method of chemical extraction. According to some it is somewhat analogous to the cell cytoskeleton. In contrast to the cytoskeleton, however, the nuclear matrix has been proposed to be a dynamic structure. Along with the nuclear lamina, it supposedly aids in organizing the genetic information within the cell.
Satellite or SAT chromosomes are chromosomes that contain secondary constructs that serve as identification. They are observed in Acrocentric chromosomes. In addition to the centromere, one or more secondary constrictions can be observed in some chromosomes at metaphase. These chromosomes are called satellite chromosomes. In humans it is usually associated with the short arm of an acrocentric chromosome, such as in the chromosomes 13, 14, 15, 21, & 22. The Y chromosome can also contain satellites, although these are thought to be translocations from autosomes. The secondary constriction always keeps its position, so it can be used as markers to identify specific chromosomes.
Laura Manuelidis is a physician and neuropathologist at Yale University.
Chromosome conformation capture techniques are a set of molecular biology methods used to analyze the spatial organization of chromatin in a cell. These methods quantify the number of interactions between genomic loci that are nearby in 3-D space, but may be separated by many nucleotides in the linear genome. Such interactions may result from biological functions, such as promoter-enhancer interactions, or from random polymer looping, where undirected physical motion of chromatin causes loci to collide. Interaction frequencies may be analyzed directly, or they may be converted to distances and used to reconstruct 3-D structures.
Christoph Cremer is a German physicist and emeritus at the Ruprecht-Karls-University Heidelberg, former honorary professor at the University of Mainz and was a former group leader at Institute of Molecular Biology (IMB) at the Johannes Gutenberg University of Mainz, Germany, who has successfully overcome the conventional limit of resolution that applies to light based investigations by a range of different methods. In the meantime, according to his own statement, Christoph Cremer is a member of the Max Planck Institute for Chemistry and the Max Planck Institute for Polymer Research.
Amitosis, also called karyostenosis or direct cell division or binary fission, is cell proliferation that does not occur by mitosis, the mechanism usually identified as essential for cell division in eukaryotes. The polyploid macronucleus found in ciliates divides amitotically. While normal mitosis results in a precise division of parental alleles, amitosis results in a random distribution of parental alleles. Ploidy levels of >1000 in some species means both parental alleles can be maintained over many generations, while species with fewer numbers of each chromosome will tend to become homozygous for one or the other parental allele through a process known as phenotypic or allelic assortment.
M33 is a gene. It is a mammalian homologue of Drosophila Polycomb. It localises to euchromatin within interphase nuclei, but it is enriched within the centromeric heterochromatin of metaphase chromosomes. In mice, the official symbol of M33 gene styled Cbx2 and the official name chromobox 2 are maintained by the MGI. Also known as pc; MOD2. In human ortholog CBX2, synonyms CDCA6, M33, SRXY5 from orthology source HGNC. M33 was isolated by means of the structural similarity of its chromodomain. It contains a region of homology shared by Xenopus and Drosophila in the fifth exon. Polycomb genes in Drosophila mediate changes in higher-order chromatin structure to maintain the repressed state of developmentally regulated genes. It may also involved in the campomelic syndrome and neoplastic disorders linked to allele loss in this region. Disruption of the murine M33 gene, displayed posterior transformation of the sternal ribs and vertebral columns.
The 2000s witnessed an explosion of genome sequencing and mapping in evolutionarily diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosomal regions from more than a few species is not yet possible. The intense focus on the building of comparative maps for domestic, laboratory and agricultural (cattle) animals has traditionally been used to understand the underlying basis of disease-related and healthy phenotypes.
In cell biology, chromosome territories are regions of the nucleus preferentially occupied by particular chromosomes.
Nuclear organization refers to the spatial distribution of chromatin within a cell nucleus. There are many different levels and scales of nuclear organisation. Chromatin is a higher order structure of DNA.