Thomas J. Carew

Last updated

Thomas Carew, dean of the Faculty of Arts and Sciences at New York University, is an American neuroscientist whose interests center on the behavioral, cellular, and molecular analyses of learning and memory. His work provides provide empirical support for the idea that different temporal phases of memory consolidation can be best identified not by their different temporal domains, but by their molecular signatures.

Contents

Education

Carew obtained his Ph.D. from the University of California, Riverside in 1970.

Career

He then joined the laboratory of Eric Kandel as a postdoctoral fellow at the New York University School of Medicine. In 1974, he moved with the group to Columbia University’s College of Physicians and Surgeons, where he became a faculty member in the Department of Psychiatry. In 1983, he moved to Yale University as the John M. Musser Professor of Psychology and Professor of Molecular, Cellular, and Developmental Biology. He served as chair of the Department of Psychology for six years.

In 2000, Carew became the Bren Professor and chair of the Department of Neurobiology and Behavior at the University of California, Irvine. In 2011 he became the dean of the Faculty of Arts and Science and a member of the Center for Neural Science at New York University.

Research

Early in his career, in collaboration with Eric Kandel and colleagues, Carew provided the first evidence in Aplysia californica—the California sea slug—for both long-term memory and associative learning in this model system. [1] [2] Carew subsequently developed four lines of research that provide mechanistic insights into learning and memory.

First, he was able to dissociate several different types of memory on both behavioral and synaptic levels, showing, for example, in contrast to a prevailing theoretical view, that it is possible to induce both intermediate-term and long-term synaptic changes underlying memory in the absence of short-term changes. [3] Second, he developed experimental methods which permit independent analysis of somatic and synaptic compartments of identified neurons in the central nervous system (CNS) that are involved in memory formation showing, for instance, that local protein synthesis at the synapse is essential for the induction of intermediate-term memory. [4] [5] Third, he has identified three mechanistically distinct phases of synaptic facilitation in the CNS, each of which predicted the existence and molecular features of distinct temporal phases of behavioral memory. [6] [7] Finally, in more recent work, he has identified the contribution of a number of specific molecular cascades, as well as their interactions, in the induction and consolidation of different forms of memory. [8] [9] [10] [11] [12]

Carew's research contributions all connect specific synaptic and molecular events to bona fide instances of memory expressed behaviorally.

Honors

Carew is the recipient of a National Institute of Mental Health (NIMH) MERIT Award, an NIMH Career Development Award, Yale's Dylan Hixon Prize for Excellence in Teaching in the Natural Sciences, and the Outstanding Faculty Mentor Award at the University of California, Irvine.

He is an elected Fellow of the American Association for the Advancement of Science and was chair of its Neuroscience Section; he was president of the Society for Neuroscience; he is an elected Fellow of Division 6 of the American Psychological Association (APA) and an APA Distinguished Scientist Lecturer; and he is an elected Fellow of the American Academy of Arts and Sciences.

Related Research Articles

<span class="mw-page-title-main">Nervous system</span> Part of an animal that coordinates actions and senses

In biology, the nervous system is the highly complex part of an animal that coordinates its actions and sensory information by transmitting signals to and from different parts of its body. The nervous system detects environmental changes that impact the body, then works in tandem with the endocrine system to respond to such events. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrates, it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers, or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called motor nerves or efferent nerves, while those nerves that transmit information from the body to the CNS are called sensory nerves or afferent. Spinal nerves are mixed nerves that serve both functions. The PNS is divided into three separate subsystems, the somatic, autonomic, and enteric nervous systems. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves.

<span class="mw-page-title-main">Eric Kandel</span> American neuropsychiatrist

Eric Richard Kandel is an Austrian-born American medical doctor who specialized in psychiatry, a neuroscientist and a professor of biochemistry and biophysics at the College of Physicians and Surgeons at Columbia University. He was a recipient of the 2000 Nobel Prize in Physiology or Medicine for his research on the physiological basis of memory storage in neurons. He shared the prize with Arvid Carlsson and Paul Greengard.

<span class="mw-page-title-main">Dendritic spine</span> Small protrusion on a dendrite that receives input from a single axon

A dendritic spine is a small membranous protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head, and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons. It has also been suggested that changes in the activity of neurons have a positive effect on spine morphology.

<span class="mw-page-title-main">Long-term potentiation</span> Persistent strengthening of synapses based on recent patterns of activity

In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neurons. The opposite of LTP is long-term depression, which produces a long-lasting decrease in synaptic strength.

In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory.

In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress.

The Aplysia gill and siphon withdrawal reflex (GSWR) is an involuntary, defensive reflex of the sea hare Aplysia californica, a large shell-less sea snail or sea slug. This reflex causes the sea hare's delicate siphon and gill to be retracted when the animal is disturbed. Aplysia californica is used in neuroscience research for studies of the cellular basis of behavior including: habituation, dishabituation, and sensitization, because of the simplicity and relatively large size of the underlying neural circuitry.

Schaffer collaterals are axon collaterals given off by CA3 pyramidal cells in the hippocampus. These collaterals project to area CA1 of the hippocampus and are an integral part of memory formation and the emotional network of the Papez circuit, and of the hippocampal trisynaptic loop. It is one of the most studied synapses in the world and named after the Hungarian anatomist-neurologist Károly Schaffer.

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic, G-protein coupled receptors (GPCRs) to initiate a second messenger signaling cascade that induces a broad, long-lasting signal. This modulation can last for hundreds of milliseconds to several minutes. Some of the effects of neuromodulators include: altering intrinsic firing activity, increasing or decreasing voltage-dependent currents, altering synaptic efficacy, increasing bursting activity and reconfigurating synaptic connectivity.

Ca<sup>2+</sup>/calmodulin-dependent protein kinase II Class of enzymes

Ca2+
/calmodulin-dependent protein kinase II
is a serine/threonine-specific protein kinase that is regulated by the Ca2+
/calmodulin complex. CaMKII is involved in many signaling cascades and is thought to be an important mediator of learning and memory. CaMKII is also necessary for Ca2+
homeostasis and reuptake in cardiomyocytes, chloride transport in epithelia, positive T-cell selection, and CD8 T-cell activation.

<span class="mw-page-title-main">Nonsynaptic plasticity</span> Form of neuroplasticity

Nonsynaptic plasticity is a form of neuroplasticity that involves modification of ion channel function in the axon, dendrites, and cell body that results in specific changes in the integration of excitatory postsynaptic potentials and inhibitory postsynaptic potentials. Nonsynaptic plasticity is a modification of the intrinsic excitability of the neuron. It interacts with synaptic plasticity, but it is considered a separate entity from synaptic plasticity. Intrinsic modification of the electrical properties of neurons plays a role in many aspects of plasticity from homeostatic plasticity to learning and memory itself. Nonsynaptic plasticity affects synaptic integration, subthreshold propagation, spike generation, and other fundamental mechanisms of neurons at the cellular level. These individual neuronal alterations can result in changes in higher brain function, especially learning and memory. However, as an emerging field in neuroscience, much of the knowledge about nonsynaptic plasticity is uncertain and still requires further investigation to better define its role in brain function and behavior.

The cellular transcription factor CREB helps learning and the stabilization and retrieval of fear-based, long-term memories. This is done mainly through its expression in the hippocampus and the amygdala. Studies supporting the role of CREB in cognition include those that knock out the gene, reduce its expression, or overexpress it.

Synaptic tagging, or the synaptic tagging hypothesis, was first proposed in 1997 by Julietta U. Frey and Richard G. Morris; it seeks to explain how neural signaling at a particular synapse creates a target for subsequent plasticity-related product (PRP) trafficking essential for sustained LTP and LTD. Although the molecular identity of the tags remains unknown, it has been established that they form as a result of high or low frequency stimulation, interact with incoming PRPs, and have a limited lifespan.

Memory allocation is a process that determines which specific synapses and neurons in a neural network will store a given memory. Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding. The selection of this subset of neurons is termed neuronal allocation. Similarly, multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on to encode the memory, and this process is referred to as synaptic allocation. Memory allocation was first discovered in the lateral amygdala by Sheena Josselyn and colleagues in Alcino J. Silva's laboratory.

The de novo protein synthesis theory of memory formation is a hypothesis about the formation of the physical correlates of memory in the brain. It is widely accepted that the physiological correlates for memories are stored at the synapse between various neurons. The relative strength of various synapses in a network of neurons form the memory trace, or ‘engram,’ though the processes that support this finding are less thoroughly understood. The de novo protein synthesis theory states that the production of proteins is required to initiate and potentially maintain these plastic changes within the brain. It has much support within the neuroscience community, but some critics claim that memories can be made independent of protein synthesis.

Intermediate-term memory (ITM) is a stage of memory distinct from sensory memory, working memory/short-term memory, and long-term memory. While sensory memory persists for several milliseconds, working memory persists for up to thirty seconds, and long-term memory persists from thirty minutes to the end of an individual's life, intermediate-term memory persists for about two to three hours. This overlap in the durations of these memory processes indicates that they occur simultaneously, rather than sequentially. Indeed, intermediate-term facilitation can be produced in the absence of long-term facilitation. However, the boundaries between these forms of memory are not clear-cut, and they can vary depending on the task. Intermediate-term memory is thought to be supported by the parahippocampal cortex.

<span class="mw-page-title-main">Heterosynaptic plasticity</span>

Synaptic plasticity refers to a chemical synapse's ability to undergo changes in strength. Synaptic plasticity is typically input-specific, meaning that the activity in a particular neuron alters the efficacy of a synaptic connection between that neuron and its target. However, in the case of heterosynaptic plasticity, the activity of a particular neuron leads to input unspecific changes in the strength of synaptic connections from other unactivated neurons. A number of distinct forms of heterosynaptic plasticity have been found in a variety of brain regions and organisms. These different forms of heterosynaptic plasticity contribute to a variety of neural processes including associative learning, the development of neural circuits, and homeostasis of synaptic input.

<span class="mw-page-title-main">Kaang Bong-kiun</span> Southu Korean neuroscietnist (born 1961)

Kaang Bong-Kiun was born in Jeju-do, South Korea, on November 21, 1961. He is a professor of neuroscience in the Department of Biological Sciences of Seoul National University. He is a Fellow of the Korean Academy of Science and Technology and co-director of the IBS Center for Cognition and Sociality with Changjoon Justin Lee.

<span class="mw-page-title-main">Min Zhuo</span> Canadian neuroscientist

Min Zhuo is a pain neuroscientist at the University of Toronto in Canada. He is the Michael Smith Chair in Neuroscience and Mental Health as well as the Canada Research Chair in Pain and Cognition and a Fellow of the Royal Society of Canada. Zhou was hosted in 2017-2018 as a guest professor at the pharmacology institute at Heidelberg University, Heidelberg.

Early long-term potentiation (E-LTP) is the first phase of long-term potentiation (LTP), a well-studied form of synaptic plasticity, and consists of an increase in synaptic strength. LTP could be produced by repetitive stimulation of the presynaptic terminals, and it is believed to play a role in memory function in the hippocampus, amygdala and other cortical brain structures in mammals.

References

  1. Carew, T.J., Pinsker, H., and Kandel, E.R. (1972) Long-term habituation of a defensive withdrawal reflex in Aplysia. Science 175, 451-454
  2. Carew, T.J., Hawkins, R.D., and Kandel, E.R. (1983) Differential classical conditioning of a defensive withdrawal reflex in Aplysia. Science 219, 397-400
  3. Emptage, N.J. and Carew, T.J. (1993) Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia sensory neurons. Science, 262, 253-256.
  4. Sherff, Carolyn M. and Carew, T. J. (1999) Coincident induction of long-term facilitation in Aplysia: Cooperativity between cell bodies and remote synapses. Science, 285: 1911-1914.
  5. Sherff, CM and Carew, TJ (2004) Parallel somatic and synaptic processing in the induction of intermediate-term and long-term synaptic facilitation in Aplysia. PNAS 101:7463-7468.
  6. Sutton, M.A. and Carew, T.J. (2000) Parallel molecular pathways mediate the expression of distinct forms of intermediate-term facilitation at tail sensory-motor synapses in Aplysia.Neuron, 26: 219-232.
  7. Sutton, M.A., Masters, S.E., Bagnall, M.W. and Carew, T.J. (2001) Molecular mechanisms underlying a unique intermediate phase of memory in Aplysia. Neuron, 31 (1): 143-154.
  8. Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ. (2003) Activation of a tyrosineKinase MAP kinase cascade facilitates the induction of long-term synaptic facilitation and longTerm memory in Aplysia. Neuron, 37: 473-484.
  9. Sharma, SK, Sherff, CM, Stough, S, Hsuan, V and Carew, TJ (2006) A tropomyosin-related kinaseB ligand is required for ERK activation, long-term synaptic facilitation, and long-term memory in Aplysia. Proc Natl Acad Sci, 103:14206-14210.
  10. Shobe, J., Zhao, Y., Ye, X., Stough,, S., Martin, K. and Carew, T.J. (2009) Temporal phases ofactivity-dependent plasticity and memory are mediated by compartmentalized routing of MAPKsignaling in Aplysia sensory neurons. Neuron 61:113-125.
  11. Ye, X, Marina, A. and Carew, T.J. (2012). Local synaptic integration of mitogen-activated protein kinase and protein kinase A signaling mediates intermediate-term synaptic facilitation in Aplysia. Proc Natl Acad Sci U S A.;109 (44):18162-7.
  12. Philips, G.T., Ye, X, Kopec, A., and Carew, T.J. (2013) MAPK establishes a molecular context that defines effective training patterns for long-term memory formation, Journal of Neuroscience 33 (17): 7565-7573