Thomas R. G. Green

Last updated

تسجل في الفيسبوكThomas R.G. Green (born 1941) is a British cognitive scientist, and Visiting Professor at the University of York, known for his contribution to cognitive modelling and the development of the concept of cognitive dimensions of notations. [1] [2]

In the 1980s Green was working for MRC Applied Psychology Unit in Cambridge, and became reader in computing at the Open University. [3] In 2015 he is Visiting Professor at the Department of Computer Science of the University of York, and is affiliated with the Department of Computer Science of the University of Leeds.

His research interests reaches from "Programming language design and cognitive psychology", "Interaction as an action language", and "Cognitive dimensions of notations and devices" to "Models of information artifacts" and "Virtual devices as research tools." [4]

Selected publications

Articles, a selection: [5]

Related Research Articles

Computer programming is the process of performing a particular computation, usually by designing and building an executable computer program. Programming involves tasks such as analysis, generating algorithms, profiling algorithms' accuracy and resource consumption, and the implementation of algorithms. The source code of a program is written in one or more languages that are intelligible to programmers, rather than machine code, which is directly executed by the central processing unit. The purpose of programming is to find a sequence of instructions that will automate the performance of a task on a computer, often for solving a given problem. Proficient programming thus usually requires expertise in several different subjects, including knowledge of the application domain, specialized algorithms, and formal logic.

Cognitive science Interdisciplinary scientific study of the mind and its processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

Natural language processing Field of computer science and linguistics

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Fittss law Predictive model of human movement

Fitts's law is a predictive model of human movement primarily used in human–computer interaction and ergonomics. This scientific law predicts that the time required to rapidly move to a target area is a function of the ratio between the distance to the target and the width of the target. Fitts's law is used to model the act of pointing, either by physically touching an object with a hand or finger, or virtually, by pointing to an object on a computer monitor using a pointing device. It was initially developed by Paul Fitts.

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

Interaction design, often abbreviated as IxD, is "the practice of designing interactive digital products, environments, systems, and services." Beyond the digital aspect, interaction design is also useful when creating physical (non-digital) products, exploring how a user might interact with it. Common topics of interaction design include design, human–computer interaction, and software development. While interaction design has an interest in form, its main area of focus rests on behavior. Rather than analyzing how things are, interaction design synthesizes and imagines things as they could be. This element of interaction design is what characterizes IxD as a design field as opposed to a science or engineering field.

WIMP (computing) Style of human-computer interaction

In human–computer interaction, WIMP stands for "windows, icons, menus, pointer", denoting a style of interaction using these elements of the user interface. Other expansions are sometimes used, such as substituting "mouse" and "mice" for menus, or "pull-down menu" and "pointing" for pointer.

ACT-R is a cognitive architecture mainly developed by John Robert Anderson and Christian Lebiere at Carnegie Mellon University. Like any cognitive architecture, ACT-R aims to define the basic and irreducible cognitive and perceptual operations that enable the human mind. In theory, each task that humans can perform should consist of a series of these discrete operations.

The following outline is provided as an overview of and topical guide to human–computer interaction:

GOMS is a specialized human information processor model for human-computer interaction observation that describes a user's cognitive structure on four components. In the book The Psychology of Human Computer Interaction. written in 1983 by Stuart K. Card, Thomas P. Moran and Allen Newell, the authors introduce: "a set of Goals, a set of Operators, a set of Methods for achieving the goals, and a set of Selections rules for choosing among competing methods for goals." GOMS is a widely used method by usability specialists for computer system designers because it produces quantitative and qualitative predictions of how people will use a proposed system.

Human-centered computing (HCC) studies the design, development, and deployment of mixed-initiative human-computer systems. It is emerged from the convergence of multiple disciplines that are concerned both with understanding human beings and with the design of computational artifacts. Human-centered computing is closely related to human-computer interaction and information science. Human-centered computing is usually concerned with systems and practices of technology use while human-computer interaction is more focused on ergonomics and the usability of computing artifacts and information science is focused on practices surrounding the collection, manipulation, and use of information.

User interface design Planned operator–machine interaction

User interface (UI) design or user interface engineering is the design of user interfaces for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing usability and the user experience. In computer or software design, user interface (UI) design is the process of building interfaces that are aesthetically pleasing. Designers aim to build interfaces that are easy and pleasant to use. UI design refers to graphical user interfaces and other forms of interface design. The goal of user interface design is to make the user's interaction as simple and efficient as possible, in terms of accomplishing user goals.

Cognitive complexity describes cognition along a simplicity-complexity axis. It is the subject of academic study in fields including personal construct psychology, organisational theory and human–computer interaction.

Cognitive dimensions or cognitive dimensions of notations are design principles for notations, user interfaces and programming languages, described by researcher Thomas R.G. Green and further researched with Marian Petre. The dimensions can be used to evaluate the usability of an existing information artifact, or as heuristics to guide the design of a new one, and are useful in Human-Computer Interaction design.

Secondary notation is the set of visual cues used to improve the readability of a formal notation. Examples of secondary notation include the syntax highlighting of computer source code, sizes and color codes for easy recognition of consumer symbols such as bank notes or coins, or the regular typographic conventions often found in technical books to highlight sections with the same type of content.

Interaction technique

An interaction technique, user interface technique or input technique is a combination of hardware and software elements that provides a way for computer users to accomplish a single task. For example, one can go back to the previously visited page on a Web browser by either clicking a button, pressing a key, performing a mouse gesture or uttering a speech command. It is a widely used term in human-computer interaction. In particular, the term "new interaction technique" is frequently used to introduce a novel user interface design idea.

Human–computer interaction Academic discipline studying the relationship between computer systems and their users

Human–computer interaction (HCI) is research in the design and the use of computer technology, which focuses on the interfaces between people (users) and computers. HCI researchers observe the ways humans interact with computers and design technologies that allow humans to interact with computers in novel ways.

Alan F. Blackwell is a New Zealand-British cognition scientist and professor at the Computer Laboratory, University of Cambridge, known for his work on diagrammatic representation, on data and language modelling, investment modelling, and end-user software engineering.

Marian Petre is a British computer scientist and Professor of Computing at the Open University and Director of its Centre for Research in Computing (CRC), known for her work on Visual Programming Environments, and developed the concept of cognitive dimensions of notations.

Human performance modeling (HPM) is a method of quantifying human behavior, cognition, and processes. It is a tool used by human factors researchers and practitioners for both the analysis of human function and for the development of systems designed for optimal user experience and interaction. It is a complementary approach to other usability testing methods for evaluating the impact of interface features on operator performance.


  1. Scaife, Mike, and Yvonne Rogers. "External cognition: how do graphical representations work?." International journal of human-computer studies 45.2 (1996): 185-213.
  2. Jacko, Julie A., ed. Human Computer Interaction Handbook: Fundamentals, Evolving Technologies, and Emerging Applications. CRC press, 2012.
  3. William Sims Bainbridge (2004). Berkshire Encyclopedia of Human-computer Interaction. p. 794
  4. Areas of Research Interest Archived 4 March 2016 at the Wayback Machine at Thomas Green, home page. Accessed 13.04.2015.
  5. Thomas R. G. Green at DBLP Bibliography Server OOjs UI icon edit-ltr-progressive.svg