Timestamping (computing)

Last updated

In computing, timestamping refers to the use of an electronic timestamp to provide a temporal order among a set of events.

Timestamping techniques are used in a variety of computing fields, from network management and computer security to concurrency control. [1] [2] For instance, a heartbeat network uses timestamping to monitor the nodes on a high availability computer cluster. [3]

Timestamping computer files (updating the timestamp in the per-file metadata every time a file is modified) makes it possible to use efficient build automation tools.

See also

Related Research Articles

Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address. For example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

<span class="mw-page-title-main">Process (computing)</span> Particular execution of a computer program

In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently.

<span class="mw-page-title-main">Parallel computing</span> Programming paradigm in which many processes are executed simultaneously

Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling. As power consumption by computers has become a concern in recent years, parallel computing has become the dominant paradigm in computer architecture, mainly in the form of multi-core processors.

<span class="mw-page-title-main">Universally unique identifier</span> Label used for information in computer systems

A Universally Unique Identifier (UUID) is a 128-bit label used for information in computer systems. The term Globally Unique Identifier (GUID) is also used, mostly in Microsoft systems.

In information technology and computer science, especially in the fields of computer programming, operating systems, multiprocessors, and databases, concurrency control ensures that correct results for concurrent operations are generated, while getting those results as quickly as possible.

Multiversion concurrency control, is a non-locking concurrency control method commonly used by database management systems to provide concurrent access to the database and in programming languages to implement transactional memory.

This page provides an index of articles thought to be Internet or Web related topics.

<span class="mw-page-title-main">Timestamp</span> Information identifying when an event occurred

A timestamp is a sequence of characters or encoded information identifying when a certain event occurred, usually giving date and time of day, sometimes accurate to a small fraction of a second. Timestamps do not have to be based on some absolute notion of time, however. They can have any epoch, can be relative to any arbitrary time, such as the power-on time of a system, or to some arbitrary time in the past.

<span class="mw-page-title-main">Unix time</span> Date and time representation system widely used in computing

Unix time is a date and time representation widely used in computing. It measures time by the number of non-leap seconds that have elapsed since 00:00:00 UTC on 1 January 1970, the Unix epoch. In modern computing, values are sometimes stored with higher granularity, such as microseconds or nanoseconds.

Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.

Replication in computing involves sharing information so as to ensure consistency between redundant resources, such as software or hardware components, to improve reliability, fault-tolerance, or accessibility.

File transfer is the transmission of a computer file through a communication channel from one computer system to another. Typically, file transfer is mediated by a communications protocol. In the history of computing, numerous file transfer protocols have been designed for different contexts.

In computing, a shared resource, or network share, is a computer resource made available from one host to other hosts on a computer network. It is a device or piece of information on a computer that can be remotely accessed from another computer transparently as if it were a resource in the local machine. Network sharing is made possible by inter-process communication over the network.

A clustered file system (CFS) is a file system which is shared by being simultaneously mounted on multiple servers. There are several approaches to clustering, most of which do not employ a clustered file system. Clustered file systems can provide features like location-independent addressing and redundancy which improve reliability or reduce the complexity of the other parts of the cluster. Parallel file systems are a type of clustered file system that spread data across multiple storage nodes, usually for redundancy or performance.

In concurrency control of databases, transaction processing, and other transactional distributed applications, global serializability is a property of a global schedule of transactions. A global schedule is the unified schedule of all the individual database schedules in a multidatabase environment. Complying with global serializability means that the global schedule is serializable, has the serializability property, while each component database (module) has a serializable schedule as well. In other words, a collection of serializable components provides overall system serializability, which is usually incorrect. A need in correctness across databases in multidatabase systems makes global serializability a major goal for global concurrency control. With the proliferation of the Internet, Cloud computing, Grid computing, and small, portable, powerful computing devices, as well as increase in systems management sophistication, the need for atomic distributed transactions and thus effective global serializability techniques, to ensure correctness in and among distributed transactional applications, seems to increase.

Distributed concurrency control is the concurrency control of a system distributed over a computer network.

This page is a glossary of Operating systems terminology.

In distributed computing, a conflict-free replicated data type (CRDT) is a data structure that is replicated across multiple computers in a network, with the following features:

  1. The application can update any replica independently, concurrently and without coordinating with other replicas.
  2. An algorithm automatically resolves any inconsistencies that might occur.
  3. Although replicas may have different state at any particular point in time, they are guaranteed to eventually converge.

References

  1. Advances in Computer Science and Information Technology by Tai-hoon Kim, Hojjat Adeli 2010 ISBN   3642135765 page 183
  2. Computer aided verification: 13th International conference, by Gérard Berry, Hubert Comon, A. Finkel 2001 ISBN   3540423451 page 423
  3. Theoretical Aspects of Distributed Computing in Sensor Networks by Sotiris Nikoletseas and José D.P. Rolim 2011 ISBN   3642148484 page 304