Toronto space

Last updated

In mathematics, in the realm of point-set topology, a Toronto space is a topological space that is homeomorphic to every proper subspace of the same cardinality.

There are five homeomorphism classes of countable Toronto spaces, namely: the discrete topology, the indiscrete topology, the cofinite topology and the upper and lower topologies on the natural numbers. The only countable Hausdorff Toronto space is the discrete space. [1]

The Toronto space problem asks for an uncountable Toronto Hausdorff space that is not discrete. [2]

Related Research Articles

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more obvious, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; this is the sense in which the product topology is "natural".

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set, i.e., it defines all subsets as open sets. In particular, each singleton is an open set in the discrete topology.

In mathematics, a baseB for a topological space X with topology T is a collection of sets in X such that every open set in X can be written as a union of elements of B. We say that the base generates the topology T. Bases are useful because many properties of topologies can be reduced to statements about a base generating that topology, and because many topologies are most easily defined in terms of a base which generates them.

General topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. Another name for general topology is point-set topology.

In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.

In topology and related branches of mathematics, a totally disconnected space is a topological space that is maximally disconnected, in the sense that it has no non-trivial connected subsets. In every topological space, the singletons are connected; in a totally disconnected space, these are the only connected subsets.

In topology, a topological space with the trivial topology is one where the only open sets are the empty set and the entire space. Such spaces are commonly called indiscrete, anti-discrete, or codiscrete. Intuitively, this has the consequence that all points of the space are "lumped together" and cannot be distinguished by topological means. Every indiscrete space is a pseudometric space in which the distance between any two points is zero.

Discrete group discrete subgroup of a topological group G is a subgroup H such that there is an open cover of H in which every open subset contains exactly one element of H; in other words, the subspace topology of H in G is the discrete topology

In mathematics, a discrete subgroup of a topological group G is a subgroup H such that there is an open cover of G in which every open subset contains exactly one element of H; in other words, the subspace topology of H in G is the discrete topology. For example, the integers, Z, form a discrete subgroup of the reals, R, but the rational numbers, Q, do not. A discrete group is a topological group G equipped with the discrete topology.

The cocountable topology or countable complement topology on any set X consists of the empty set and all cocountable subsets of X, that is all sets whose complement in X is countable. It follows that the only closed subsets are X and the countable subsets of X.

In topology, a compactly generated space is a topological space whose topology is coherent with the family of all compact subspaces. Specifically, a topological space X is compactly generated if it satisfies the following condition:

In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have.

<i>Counterexamples in Topology</i> book by Lynn Steen

Counterexamples in Topology is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

Topological manifold topological space (which may also be a separated space) which locally resembles real n-dimensional space in a sense defined below

In topology, a branch of mathematics, a topological manifold is a topological space which locally resembles real n-dimensional space in a sense defined below. Topological manifolds form an important class of topological spaces with applications throughout mathematics. All manifolds are topological manifolds by definition, but many manifolds may be equipped with additional structure. Every manifold has an "underlying" topological manifold, gotten by simply "forgetting" any additional structure the manifold has.

In mathematics, particularly topology, collections of subsets are said to be locally discrete if they look like they have precisely one element from a local point of view. The study of locally discrete collections is worthwhile as Bing's metrization theorem shows.

References

  1. Bonnet, Robert (1993), "On superatomic Boolean algebras", Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Dordrecht: Kluwer Acad. Publ., pp. 31–62, MR   1261195 .
  2. van Mill, J.; Reed, George M. (1990), Open problems in topology, Volume 1, North-Holland, p.  15, ISBN   9780444887689 .