Torsion pendulum clock

Last updated
Anniversary clock manufactured by S. Haller & Sohne Co. Haller torsion pendulum anniversary clock.jpg
Anniversary clock manufactured by S. Haller & Söhne Co.
Kundo reverts here. For other use, see Kundo (disambiguation)

A torsion pendulum clock, more commonly known as an anniversary clock or 400-day clock, is a mechanical clock which keeps time with a mechanism called a torsion pendulum. This is a weighted disk or wheel, often a decorative wheel with three or four chrome balls on ornate spokes, suspended by a thin wire or ribbon called a torsion spring (also known as "suspension spring"). The torsion pendulum rotates about the vertical axis of the wire, twisting it, instead of swinging like an ordinary pendulum. The force of the twisting torsion spring reverses the direction of rotation, so the torsion pendulum oscillates slowly, clockwise and counterclockwise. The clock's gears apply a pulse of torque to the top of the torsion spring with each rotation to keep the wheel going. The Atmos Clock made by the Swiss company Jaeger-LeCoultre is another style of this clock. The wheel and torsion spring function similarly to a watch's balance wheel and hairspring, as a harmonic oscillator to control the rate of the clock's hands.

Contents

Description

Torsion clocks are unusually delicate, ornamental machines which require stable conditions to operate properly. The clocks are protected from the vagaries of air currents by a glass dome. Clocks of this style were first made by Anton Harder around 1880, [1] and they are also known as 400-day or anniversary clocks because many can run for an entire year on a single winding.

Mechanism

Torsion clock schematics Mecanismo torsion.png
Torsion clock schematics

Torsion clocks are capable of running much longer between windings than clocks with an ordinary pendulum, because the torsion pendulum rotates slowly and takes little energy. However they can be difficult to set up, and are usually not as accurate as clocks with ordinary pendulums. One reason is that the oscillation period of the torsion pendulum changes with temperature due to the temperature-dependent elasticity of the spring. Nivarox suspension spring wire is now the standard for use; this makes the clock much more accurate. The clock can be made faster or slower by an adjustment screw mechanism on the torsion pendulum that moves the weight balls in or out from the axis. The closer in the balls are, the smaller the moment of inertia of the torsion pendulum and the faster it will turn, like a spinning ice skater pulling in their arms. This causes the clock to speed up.

One oscillation of the torsion pendulum usually takes 12, 15, or 20 seconds. [2] The escapement mechanism, which changes the rotational motion of the clock's gears to pulses to drive the torsion pendulum, works rather like an anchor escapement. A crutch device at the top of the torsion spring engages a lever with two anchor-shaped arms; the two arms alternately engage the teeth of the escape wheel. As the anchor releases a tooth of the escape wheel, the lever, which is fixed to the anchor, moves to one side and, via the crutch, gives a small twist to the top of the torsion spring. This is just enough to keep the oscillation going.

The Atmos clock, made by Jaeger-LeCoultre, is a type of torsion pendulum clock that winds itself. The mainspring which powers the clock's wheels is kept wound by small changes in atmospheric pressure and/or local temperature, using a bellows mechanism. Thus no winding key or battery is needed, and it can run for years without human intervention.

History

The torsion pendulum was invented by Robert Leslie in 1793. [3] The torsion pendulum clock was first invented and patented by American Aaron Crane in 1841. [4] He made clocks that would run up to one year on a winding. He also made precision astronomical regulator clocks based on the torsion pendulum, but only four were sold.

The German Anton Harder apparently independently invented and patented the torsion clock in 1879-1880. [4] He was inspired by watching a hanging chandelier rotate after a servant had turned it to light the candles. He formed the firm Jahresuhrenfabrik ('Year Clock Factory') and designed a clock that would run for a year, but its accuracy was poor. He sold the patent in 1884 to F. A. L. deGruyter of Amsterdam, who allowed the patent to expire in 1887. Other firms entered the market, beginning the German mass production of these clocks.

Although they were successful commercially, torsion clocks remained poor timekeepers. In 1951, Charles Terwilliger of the Horolovar Co. invented a temperature compensating suspension spring, which allowed fairly accurate clocks to be made.

Footnotes

  1. "Four Hundred Day Clock". Encyclopedia of Antiques. Old and Sold Antique Marketplace. Retrieved 2008-04-20.
  2. Hubby, John (16 Jan 2007). "Horolovar Springs-Hooks Law". 400-Day, Atmos and other Torsion Clocks, NAWCC (Mailing list).
  3. "Torsion Pendulum". Encyclopedia of Antiques. Old and Sold Antique Marketplace. Retrieved 2008-04-20.
  4. 1 2 Connolly, John (2007). "History of Torsion Suspension Clocks". Clocks Canada. Retrieved 2008-06-01.

Related Research Articles

<span class="mw-page-title-main">Pendulum clock</span> Clock regulated by a pendulum

A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens, inspired by Galileo Galilei, until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries, pendulum clocks in homes, factories, offices, and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation. Their greater accuracy allowed for the faster pace of life which was necessary for the Industrial Revolution. The home pendulum clock was replaced by less-expensive synchronous electric clocks in the 1930s and '40s. Pendulum clocks are now kept mostly for their decorative and antique value.

<span class="mw-page-title-main">Pendulum</span> Mechanism for regulating the speed of clocks

A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

<span class="mw-page-title-main">Torsion spring</span> Type of spring

A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:

<span class="mw-page-title-main">Grasshopper escapement</span> Low friction clock escapement

The grasshopper escapement is a low-friction escapement for pendulum clocks invented by British clockmaker John Harrison around 1722. An escapement, part of every mechanical clock, is the mechanism that gives the clock's pendulum periodic pushes to keep it swinging, and each swing releases the clock's gears to move forward by a fixed amount, thus moving the hands forward at a steady rate. The grasshopper escapement was used in a few regulator clocks built during Harrison's time, and a few others over the years, but has never seen wide use. The term "grasshopper" in this connection, apparently from the kicking action of the pallets, first appears in the Horological Journal in the late 19th century. The term “escapement” is not really applicable here, since the wheel never escapes the pallets: there is always a tooth in contact, so there is never a short period where the wheel “escapes” and free-wheels forward to impact the other pallet.

<span class="mw-page-title-main">Escapement</span> Mechanism for regulating the speed of clocks

An escapement is a mechanical linkage in mechanical watches and clocks that gives impulses to the timekeeping element and periodically releases the gear train to move forward, advancing the clock's hands. The impulse action transfers energy to the clock's timekeeping element to replace the energy lost to friction during its cycle and keep the timekeeper oscillating. The escapement is driven by force from a coiled spring or a suspended weight, transmitted through the timepiece's gear train. Each swing of the pendulum or balance wheel releases a tooth of the escapement's escape wheel, allowing the clock's gear train to advance or "escape" by a fixed amount. This regular periodic advancement moves the clock's hands forward at a steady rate. At the same time, the tooth gives the timekeeping element a push, before another tooth catches on the escapement's pallet, returning the escapement to its "locked" state. The sudden stopping of the escapement's tooth is what generates the characteristic "ticking" sound heard in operating mechanical clocks and watches.

<span class="mw-page-title-main">Movement (clockwork)</span> Mechanism of a watch or clock

In horology, a movement, also known as a caliber or calibre, is the mechanism of a watch or timepiece, as opposed to the case, which encloses and protects the movement, and the face, which displays the time. The term originated with mechanical timepieces, whose clockwork movements are made of many moving parts. The movement of a digital watch is more commonly known as a module.

<span class="mw-page-title-main">Mainspring</span> Spiral torsion spring of metal ribbon used as a power source in mechanical watches and clocks

A mainspring is a spiral torsion spring of metal ribbon—commonly spring steel—used as a power source in mechanical watches, some clocks, and other clockwork mechanisms. Winding the timepiece, by turning a knob or key, stores energy in the mainspring by twisting the spiral tighter. The force of the mainspring then turns the clock's wheels as it unwinds, until the next winding is needed. The adjectives wind-up and spring-powered refer to mechanisms powered by mainsprings, which also include kitchen timers, metronomes, music boxes, wind-up toys and clockwork radios.

<span class="mw-page-title-main">Anchor escapement</span> Type of mechanism used in pendulum clocks

In horology, the anchor escapement is a type of escapement used in pendulum clocks. The escapement is a mechanism in a mechanical clock that maintains the swing of the pendulum by giving it a small push each swing, and allows the clock's wheels to advance a fixed amount with each swing, moving the clock's hands forward. The anchor escapement was so named because one of its principal parts is shaped vaguely like a ship's anchor.

<span class="mw-page-title-main">Verge escapement</span> Early clock mechanism

The vergeescapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were used from the late 13th century until the mid 19th century in clocks and pocketwatches. The name verge comes from the Latin virga, meaning stick or rod.

<span class="mw-page-title-main">Balance wheel</span> Time measuring device

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present. From its invention in the 14th century until tuning fork and quartz movements became available in the 1960s, virtually every portable timekeeping device used some form of balance wheel.

<span class="mw-page-title-main">Tourbillon</span> Addition to the mechanics of a watch escapement

In horology, a tourbillon is an addition to the mechanics of a watch escapement to increase accuracy. Conceived by the British watchmaker and inventor John Arnold, it was developed by his friend the Swiss-French watchmaker Abraham-Louis Breguet and patented by Breguet on 26 June 1801. In a tourbillon the escapement and balance wheel are mounted in a rotating cage, with the goal of eliminating errors of poise in the balance giving a uniform weight.

<span class="mw-page-title-main">Lever escapement</span>

The lever escapement, invented by the English clockmaker Thomas Mudge in 1754, is a type of escapement that is used in almost all mechanical watches, as well as small mechanical non-pendulum clocks, alarm clocks, and kitchen timers.

<span class="mw-page-title-main">Fusee (horology)</span> Mainspring force equalizing pulley in timepieces

A fusee is a cone-shaped pulley with a helical groove around it, wound with a cord or chain attached to the mainspring barrel of antique mechanical watches and clocks. It was used from the 15th century to the early 20th century to improve timekeeping by equalizing the uneven pull of the mainspring as it ran down. Gawaine Baillie stated of the fusee, "Perhaps no problem in mechanics has ever been solved so simply and so perfectly."

<span class="mw-page-title-main">Atmos clock</span> Brand-name torsion pendulum clock

Atmos is the brand name of a mechanical torsion pendulum clock manufactured by Jaeger-LeCoultre in Switzerland which does not need to be wound manually. It gets the energy it needs to run from temperature and atmospheric pressure changes in the environment, and can run for years without human intervention.

<span class="mw-page-title-main">Electric clock</span> Clock powered by electricity

An electric clock is a clock that is powered by electricity, as opposed to a mechanical clock which is powered by a hanging weight or a mainspring. The term is often applied to the electrically powered mechanical clocks that were used before quartz clocks were introduced in the 1980s. The first experimental electric clocks were constructed around the 1840s, but they were not widely manufactured until mains electric power became available in the 1890s. In the 1930s, the synchronous electric clock replaced mechanical clocks as the most widely used type of clock.

<span class="mw-page-title-main">Riefler escapement</span> Mechanical escapement for pendulum clocks

The Riefler escapement is a mechanical escapement for precision pendulum clocks invented and patented by German instrument maker Sigmund Riefler in 1889. It was used in the astronomical regulator clocks made by his German firm Clemens Riefler from 1890 to 1965, which were perhaps the most accurate all-mechanical pendulum clocks made.

<span class="mw-page-title-main">Turret clock</span> Large prominently located clock used as a public amenity

A turret clock or tower clock is a clock designed to be mounted high in the wall of a building, usually in a clock tower, in public buildings such as churches, university buildings, and town halls. As a public amenity to enable the community to tell the time, it has a large face visible from far away, and often a striking mechanism which rings bells upon the hours.

<span class="mw-page-title-main">Mechanical watch</span> Type of watch which uses a clockwork mechanism to measure the passage of time

A mechanical watch is a watch that uses a clockwork mechanism to measure the passage of time, as opposed to quartz watches which function using the vibration modes of a piezoelectric quartz tuning fork, or radio watches, which are quartz watches synchronized to an atomic clock via radio waves. A mechanical watch is driven by a mainspring which must be wound either periodically by hand or via a self-winding mechanism. Its force is transmitted through a series of gears to power the balance wheel, a weighted wheel which oscillates back and forth at a constant rate. A device called an escapement releases the watch's wheels to move forward a small amount with each swing of the balance wheel, moving the watch's hands forward at a constant rate. The escapement is what makes the 'ticking' sound which is heard in an operating mechanical watch. Mechanical watches evolved in Europe in the 17th century from spring powered clocks, which appeared in the 15th century.

<span class="mw-page-title-main">Shortt–Synchronome clock</span> Precision pendulum clock invented by William Hamilton Shortt and Frank Hope-Jones

The Shortt–Synchronome free pendulum clock is a complex precision electromechanical pendulum clock invented in 1921 by British railway engineer William Hamilton Shortt in collaboration with horologist Frank Hope-Jones, and manufactured by the Synchronome Company, Ltd., of London. They were the most accurate pendulum clocks ever commercially produced, and became the highest standard for timekeeping between the 1920s and the 1940s, after which mechanical clocks were superseded by quartz time standards. They were used worldwide in astronomical observatories, naval observatories, in scientific research, and as a primary standard for national time dissemination services. The Shortt was the first clock to be a more accurate timekeeper than the Earth itself; it was used in 1926 to detect tiny seasonal changes in the Earth's rotation rate. Shortt clocks achieved accuracy of around a second per year, although a recent measurement indicated they were even more accurate. About 100 were produced between 1922 and 1956.

In horology, a wheel train is the gear train of a mechanical watch or clock. Although the term is used for other types of gear trains, the long history of mechanical timepieces has created a traditional terminology for their gear trains which is not used in other applications of gears.